The Structure of Guideline Recommendations: A Synthesis

Samson Tu
Stanford Medical Informatics
Stanford University School of Medicine

AMIA 2003 Symposium
Washington DC
November 11, 2003
Outline

- Motivation
- Recommendation set formalism
- Validation
 - SAGE implementation
 - Comparisons with other models
- Conclusion
Motivation: HL7 CG SIG work item

- To develop standardized “flowchart” model for human understanding and computer encoding
 - Expressive process model
 - allows sequencing, repetition, and concurrency (branching and synchronization)
 - Integration of decision making and activity specification
 - Visual clarity
 - Well-understood semantics
- However: not all guideline recommendations are “flowcharts”
Reformulated work item

- To define structure and organization for sets of guideline recommendations

- Recommendation consists of:
 - Context: clinical setting, patient state, current therapy, provider role, triggering event
 - Decision: choice among alternatives based on evidence/preference
 - Action: computer or clinical actions

- Two classes of “recommendation set”
 - activity graph
 - decision map
Activity graph

- Used to specify processes
 - computational and care processes

- Directed graph of
 - context
 - decision step
 - action step
 - route: purely for branching and synchronization

- Adapted from Workflow Management Coalition process model
Decision map

- Not all guidelines are process-oriented
- Collection of decision points
 - Context, decision, action nodes
 - No interpretation as activities in a process
- Alternative computational models
 - If/then statements
 - Augmented transition network
 - Connected graph
 - One alternative allowed at decision point
Outline

- Motivation
- Recommendation set formalism
- Validation
 - SAGE implementation
 - Comparisons with other models
- Conclusion
Validation: SAGE implementation

- SAGE project
 - Consortium of IDX, Apelon, IHC, Mayo, Nebraska, Stanford to develop infrastructure for guideline-based decision-support systems

- SAGE guideline modeling methodology
 - Select guideline
 - Develop usage scenarios
 - Specify guideline logic and terminology
 - Encode guideline in Protégé-2000
 - Simulate implementation in IDX clinical information system (CIS)

- Example guideline: immunization
Encoding of guideline in Protégé-2000: Top-level processes

- Top-level activity graphs model processes in which DSS interactions with providers through clinical information system
- Highly dependent on expected clinical workflow
Decisions involve choices of assertion to make about an immunization
- Possibly due
- Contraindicated

Assertion about immunizations tested at top-level activity graph

RE-usable medical logic called as subguidelines
Outline

- Motivation
- Recommendation set formalism
- Validation
 - SAGE implementation
 - Comparisons with other models
- Conclusion
Comparison with Arden Syntax

- Arden Syntax and Medical Logic Modules
 - Evoke: Events that trigger MLMs => Context
 - e.g. storage of serum creatinine
 - Logic: Condition to be tested => Decision
 - e.g. if current_creatinine > baseline_creatinine+0.3 then conclude true;
 - Action: Action to be performed if logic slot “conclude true” => Action
 - e.g. write “The patient’s serum creatinine level may signify worsening renal function”
- A decision map analogous to a collection of MLMs
Comparison with PRODIGY scenario map

- **PRODIGY**
 - Guideline-based decision-support system for primary care developed at University of Newcastle
 - Release One available on UK GP systems

- Scenario map => Decision map with augmented transition semantics
Comparison with GLIF

- GLIF
 - Guideline modeling formalism developed by InterMed (collaboratory of Columbia, Harvard, Stanford)
- GLIF algorithm \(\rightarrow\) Activity graph
- GLIF patient-state step a specialization of Context node
- GLIF synchronization uses a complex expression (a series of Route nodes)
Comparison with HL7 RIM

- HL7 RIM Act decomposition => Activity graph
- Numerical ordering of acts (sequence_nbr) implies a particular structure
- A syntactic variant of activity graph where
 - Splits and joins are balanced
 - Sequences between branching and synchronization points is expressed as additional decomposition
HL7 split and join properties

- HL7 RIM split and join properties different from those of WfMC
 - Can be simulated using WfMC’s splits and joins

- Specifies split and join properties as attributes of Act relationship
 - Possible to specify split and join properties of individual subact (e.g. C1 may have a join property different from C2 and C3)
 - Need to work out relationship with WfMC process model used by activity graph
Conclusion

- Recommendation set formalism
 - Defines structure of guideline recommendations
 - Makes distinction between processes (activity graph) and collections of decisions (decision map)
 - Tested in SAGE implementation
 - Mapped to several guideline modeling formalisms

- Next steps
 - Specification of execution semantics
 - Further reconciliation with HL7 RIM?
 - Proposal as an HL7 informative document
Thank you
Lessons from SAGE experiment

- Activity graphs
 - Model reactions and interactions of guideline DSS with clinical information systems
 - Guideline DSS reacts to events in workflow

- Decision maps
 - Provide good cognitive correspondence with rule-like recommendations (e.g. whether hepatitis B vaccine due)
 - Reusable in different settings