SAGE Guideline Modeling: Motivations and Methodology

Samson W. Tu, James Campell, Mark A. Musen
Stanford Medical Informatics
Stanford University School of Medicine
Outline

- SAGE: Standards-Based Active Guideline Environment
- Deployment-Driven Guideline Modeling
- Compliance with Standards
- SAGE Decision-Support System Architecture
- Results and Conclusions
SAGE: Standards-Based Active Guideline Environment

- 3-year US NIST Advanced Technology Program grant
- IDX leads R&D consortium that includes as partners:
 - Apelon, Inc.
 - Stanford Medical Informatics (SMI)
 - Intermountain Healthcare (IHC)
 - University of Nebraska Medical Center (UNMC)
 - Mayo Clinic
- Ultimate goal: An infrastructure that will allow execution of standards-based clinical practice guidelines across heterogeneous clinical information systems (CIS)
- Focus is on the goal of deployment of guideline knowledge within the workflow of clinical information systems
Deployment-Driven Guideline Modeling

• Assumption: Guideline DSS is reactive
 • Not in control of clinical workflow
 • Respond to external events (including passage of time)
• Methodology
 • Empirically define points in care processes where guideline DSS may provide services
 • Discover characteristics of human-computer interactions that enhances prospect of acceptance
• Method
 • Create scenarios that walk-through care process
 • Create prototype GUI to validate in usability lab
Clinical scenario: Patient arrives for visit with primary physician. At check-in, SAGE checks for immunizations that are due and prints consents and information sheets. Nurse then reviews any other shots received, updates the record, and SAGE pre-order immunizations to be given that day.
Mayo Usability Lab

- Prototypes tested by clinicians in Mayo usability lab
Results of Scenario Development

- Scenario development defines events and actions that SAGE must respond to and generate. Scenarios help to define what guideline knowledge must be encoded and what data must be queried.

Diagram:
- CIS
- Order/Order Set
- In-Box Message
- Inquiry
- Events
- Queries
- Guideline Actions
- SAGE
- Guidelines
- SAGE Guideline Knowledge Base
Top-Level Workflow-Aware Process

- Top-level process description in encoded guideline reflect expected reactions to events in clinical workflow
Context nodes organize and specify the relationship to workflow. They record:

- Who is involved
- Where the session occurs
- What resources are required
- Clinical Information processing
- What triggers or begins session
Sub-guidelines

Can be thought of as reusable subsets of guideline logic (much like subroutines) for repeated use within a recommendation set.
Compliance with Standard....

• Take existing components whenever possible
 • Data types: HL7 version 3 data types
 • Reference terminology: SNOMED CT, LOINC, NDF-RT
 • Patient data model: “virtual medical record” being defined by HL7 Clinical Decision Work TC
 • Expression language: GELLO

• Difficulties
 • Moving targets: e.g. GELLO not well specified until 2004/03
 • Mismatches
 e.g. between guideline concepts and terminology concepts
Specifying a Decision Criterion: Presence of Chronic Pulmonary Disease (excl asthma)

- GELLO
 - Collection->exists(attribute.equals(value))
- Virtual Medical Record
 - Problem-> exists(code.equals(Factory.CodedValue(...)))
- Terminology
 - CodedValue
 - display_name: Chronic pulmonary disease (excl asthma)
 - terminology SAGE
 - code 434343
 - Concept expression
 - (SNOMED 128272009) AND (SNOMED 128272009) AND (NOT (SNOMED 195967001))
 - Chronic respiratory disease AND Disease of lower respiratory system AND (NOT Asthma)
Integration of SAGE Decision-Support System with Clinical Information System

CIS (CareCast) → Event Notification → Event Listener → VMR Service Calls → Terminology Server → Action Service Calls → Action Services

SAGE Execution Engine and Guideline Knowledge Bases
Results and Conclusions

• Prototype specification and implementation
• Working cycles of scenario development, guideline encoding, and simulation in CIS environment for exemplar guidelines:
 • Immunization, Diabetes
 • Community-acquired pneumonia, Hip replacements
• Good understanding of components of infrastructure required to integrate standard-based guideline DSS with CIS
• Involvement with standard organization (Health Level 7) to reconcile SAGE project results with emerging version 3 standards