“A collaborative project to develop a universal framework for sharing health knowledge in the form of computable clinical practice guidelines”

21 December 2005
Hello....

• Robert Abarbanel, MD, PhD
• Jim McClay, MD
• Craig Parker, MD, MS
• Guy Mansfield, PhD
• David Berg
Agenda

1. SAGE mission and goals
2. Technical details
 - Guideline model
 - Execution engine
 - Interfaces
3. Accomplishments
4. 2006 Plan
5. *Azyxxi Collaboration*
Project Overview

Standards-based **Sharable** **Active** **Guideline** **Environment**

- An R&D consortium to develop the technology infrastructure to enable computable clinical guidelines, that will be shareable and interoperable across multiple clinical information system platforms
- Scope: 3 year, $18 M, multi-site, collaborative project

- Partners in the project are:
 - IDX Systems Inc.
 - Apelon, Inc.
 - Intermountain Healthcare (IHC)
 - Mayo Clinic
 - Stanford Medical Informatics (SMI)
 - University of Nebraska Medical Center (UNMC)

- Funded in part by: NIST Advanced Technology Program

Cooperative Agreement Number 70NANB1H3049

21 December 2005
Sponsored by the Department of Health and Human Services (DHHS), the purpose of the conference was to develop a consensus for a national action agenda to guide the further development of NHII.

Safety and Quality Track Recommendation:

“Create central resources and processes that serve as a library of nationally vetted clinical guidelines and knowledge sources in standardized executable format using a standard guideline authoring tool consistent with the needs of patient safety and quality.”
SAGE Project Goals

The primary goal: Develop a Standards-Based Sharable Active Guideline Environment with which:

- Health experts can author and encode clinical practice guidelines in a standard computable format, and
- Health care organizations throughout the nation can deploy those guidelines easily within any standards-conforming clinical information system.

Type 2 Diabetes Evaluation

If Needed

Needs Stabilization?

- yes
- no

Recommend self-management program:
- Nutrition therapy
- Physical Activity
- Education for self-management
- Foot care

Set individualized treatment goals:
- Glycemic control: HbA1c < 7%
- Lipid levels: LDL < 130 mg/dl
- BP control: BP < 130/85 mm Hg
- ASA unless contraindicated
- Tobacco cessation if indicated

Treatment goals not met:
- Modify treatment based on appropriate guideline and/or
- See Glycemic Control Algorithm and/or
- Consider referral to diabetes health team or specialists

Are Treatment Goals Met?

- yes
- no

See Ongoing Management Algorithm for maintaining treatment goals and complication prevention.
SAGE Main deliverables

- **An interoperable guideline model** – A computable knowledge representation “format” for encoding the content and logic of executable clinical practice guidelines.

- **A guideline workbench** – A software tool for authoring, encoding, and maintaining guidelines in the format of the SAGE guideline model.

- **A guideline deployment system** – Software that “decodes” the content of electronic guidelines and surfaces that content via functions of the local clinical information system.

- **Controlled resources** – Specification of a common layer of information models and terminologies to mediate guideline content.
SAGE Interoperable Guideline Model

A standard computable “specification” for representing and encoding the content and logic of clinical practice guidelines

- Clinical content (criteria, actions)
- Patient status and eligibility
- Decision logic
- Clinical sequencing and workflow
- Guideline goals and intentions
- Guideline evidence and references

Type 2 Diabetes Guideline Flow Diagram, courtesy of Institute for Clinical Systems Improvement (ICSI)
Interoperable Guideline Workbench
A software tool for authoring, editing, encoding, and maintaining guidelines in the format of the Guideline Model

Type 2 Diabetes

Evaluation If Needed

Needs Stabilization?

yes

Initial stabilization for outpatients requiring immediate insulin treatment

no

Recommend self-management program:
- Nutrition therapy
- Physical Activity
- Education for self-management
- Foot care

Set individualized treatment goals:
- Glycemic control: HbA1c < 7%
- Lipid levels: LDL < 130 mg/dl
- BP control: BP < 130/85 mm Hg
- ASA unless contraindicated
- Tobacco cessation if indicated

Are Treatment Goals Met?

yes

See Ongoing Management Algorithm for maintaining treatment goals and complication prevention

no

Treatment goals not met:
- Modify treatment based on appropriate guideline and/or
- See Glycemic Control Algorithm and/or
- Consider referral to diabetes health team or specialists

Guideline File(s)

- Ensure complete encoding of guideline knowledge
- Support access to guideline content model
- Support access to controlled terminologies
- Support for visualization of guideline logic
Guideline Deployment System

Software that integrates electronic guidelines with the clinical information system to operationalize the guideline for clinicians

✓ Administer: Download, import, store
✓ Localize: Clinical edits, local constraints
✓ Set Up: Mapping to local terminologies and EMR
✓ Execute: Activation of guideline via CIS workflow
Specification of Standards

A common “layer” of terminology and information models that mediates guideline encoding and execution.

- Adoption of standard terminologies (e.g., LOINC, SNOMED CT)
- Specification of standard information models (e.g., for patient data).
- Specification of a standard for guideline knowledge representation.
- Employment of a standard expression language for guideline logic.
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Clinical Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunizations</td>
<td>Routine health maintenance, in both outpatient and inpatient settings.</td>
</tr>
<tr>
<td>Diabetes Management</td>
<td>Chronic disease monitoring and treatment.</td>
</tr>
<tr>
<td></td>
<td>Acute exacerbation of chronic disease.</td>
</tr>
<tr>
<td></td>
<td>Chronic disease as a comorbidity.</td>
</tr>
<tr>
<td>Community Acquired Pneumonia</td>
<td>Emergency room evaluation and diagnosis.</td>
</tr>
<tr>
<td></td>
<td>Outpatient treatment of acute disease.</td>
</tr>
<tr>
<td></td>
<td>Inpatient and ICU treatment of acute disease.</td>
</tr>
<tr>
<td></td>
<td>Follow-up of acute disease.</td>
</tr>
</tbody>
</table>
Sample Activity Graph: Diabetes Primary Care
Context Nodes organize and specify the relationship to workflow. They record:
- Who is involved
- Where the session occurs
- What resources are required
 - Clinical
 - Information processing
- What triggers or begins session
SAGE Guideline Representation: Decision Nodes

When should lipid labs be ordered?

Decision Nodes provide support for making choices:
- Specification of alternatives
- Logic used to evaluate choices
- Query data from patient record
- Can change the clinical workflow
Action Nodes define activity to be accomplished by clinical information system:
- User interaction and query
- Order sets
- Referrals
- Appointments and scheduling
- Goal setting
- Documentation and recording
- Messaging, print and paging
- Sub-guidelines

Order lipid Labs 24 Months From last labs

Order lipid Labs now

Order lipid labs for 6 months from last labs

Order lipid labs for 3 months from last labs

Order lipid labs 12 months from last labs

Order lipid labs 24 months from last labs

When should lipid labs be ordered?

Adult Diabetes Patient
Guideline content will be executed by the SAGE Guideline Engine, interacting with the CIS via standards-based interfaces.
SAGE Guideline
Execution Architecture

- **Encoded Guideline**
- **SAGE Execution Engine**
 - **Event Listener**
 - **Event Notifications**
 - **VMR Service calls**
 - **Action Service calls**
 - **Terminology Server**
 - **Terminology Functions**

- **VMR Services Action Interface**
- **Clinical Information System**
 - **CIS-specific implementation of services**
 - **Standards-based I/F based on web services**

21 December 2005
SAGE Guideline
Execution Architecture

Encoded Guideline

Terminology Functions

SAGE Execution Engine

Event Listener

VMR Service calls

Action Service calls

Event Notifications

VMR Services Action Interface

{ }

Clinical Information System

CIS-specific implementation of services

Standards-based I/F based on web services

21 December 2005
VMR Services Interface

- In the guideline model, patient data concepts are represented using VMR classes
- Queries for patient data are represented using standard VMR-based methods
- Patient data queries are processed via VMR Service web service
- Generic methods are “mapped” to CIS-specific methods
- Data objects returned to SAGE Engine are built from HL7 data types

Example: getObservations [Creat]

Standards-Based

- VMR-based query for lab data

CIS-Specific

- Local CIS method for: returning Creat lab values

Observation object(s) returned

21 December 2005
Implementation Architecture at Mayo

SAGE Engine
- JBoss, EJB Server
- Webservices

http SOAP

CIS Services
- Tomcat, Servlet Engine
- Webservices

NT (IDXSRV01)

Queries & Actions

CTS

DTS Remote (Apelone)

HP Non-Stop ($PMSG)

Carecast
- Tomcat, Servlet Engine

Events

Carecast UI Queries

21 December 2005
Seattle Implementation Architecture

SAGE Engine
 JBoss, EJB Server
 Webservices

CIS Server
 Tomcat, Servlet Engine
 Webservices

DTS Local

HP Non-Stop
 (SPMAD)

Events
 Carecast UI Queries

Carecast
 Tomcat, Servlet Engine

Queries & Actions

http SOAP

21 December 2005
The Virtual Medical record

• Protégé classes “define” services through which SAGE communicates with the CIS

• Attributes of these vMR classes control the ways requests are modeled in the guideline and, thus, the way that calls to the CIS are composed.
SAGE requests Problems

Problem [] getProblems

(CISContext cisContext, String medRecordNum, ProblemFilter problemFilter)
SAGE requests Problems

Problem [] getProblems

(CISContext cisContext, String medRecordNum, ProblemFilter problemFilter)

user, passwd, sessionID
SAGE requests Problems

Problem []

getProblems

(CISContext cisContext, String medRecordNum, ProblemFilter problemFilter)
SAGE requests Problems

Problem [] getProblems

(CISContext cisContext,
 String medRecordNum,
 ProblemFilter problemFilter
)

user, passwd, sessionID

patient

codes
SAGE gets Observations

Observation [] getObservations(
 CISContext cisContext, String medRecordNum, ObservationFilter observationFilter
)
SAGE gets Observations

Observation [] getObservations(
 CISContext cisContext, String medRecordNum,
 ObservationFilter observationFilter
)
The Problem Class

```java
class Problem {
    ConceptValue code;
    TimeInterval effectiveTime;
    String status;
    ConceptValue subject;
    String[] encounterIds;
}
```
ConceptValue

{ String conceptID
 String name
 String extra
 String namespace
 String version
 String type
 boolean subsumption }
A Recommendation Set for Neonatal Immunization orders…

Newborn, inpatient → Compute Immunization Decisions → Hep B dose due? → Order Process
A Recommendation Set for Neonatal immunization orders...

Context

1. Newborn, inpatient
2. Compute Immunization Decisions
3. Hep B dose due?
4. Order Process
A Recommendation Set for Neonatal immunization orders…

Context: Newborn, inpatient
Action: Compute Immunization Decisions → Hep B dose due? → Order Process
A Recommendation Set for Neonatal immunization orders...

Newborn, inpatient → Compute Immunization Decisions → Hep B dose due? → Order Process

Context → Action → Decision
A Recommendation Set for Neonatal immunization orders…

Newborn, inpatient → Compute Immunization Decisions → Hep B dose due? → Order Process

Context → Action → Decision
Newborn, inpatient → Compute Immunization Decisions → Hep B dose due? → Order Process

Decision Map for Immunizations Due → DT due and can be given → DT: Deferred

DT: indicated and can be given → DT: not due or contraindicated
Immunization Decisions: DTaP

- **DTaP Deferred**
- **DTaP Indicated and can be given**
- **DTaP Not due or contraindicated**
How does SAGE process criteria?

- Obtain CIS data (e.g., date of birth)
- Convert Units as required (e.g., lb to grams)
- Use evaluator for expressions
- Compute boolean (true or false)
- Examples:
 - Age < 7 days
 - Counting Previous Vaccinations
 - Mother’s HBsAG status
 - Consent for Immunization
SAGE Execution

- Architecture
- Semantics of the guideline model
- Event driven interpretation
- Evaluation of criteria
- Example of decision making
- SAGE Actions
Decision Logic

Hep B vaccination is due.

Neonate w/ HepB positive mother
We have 3 possibilities.

- Hep B
- Hib
- MMR

- Hep immunization not due or contraindicated
- Hep B deferred
- Hep B immunization due
We have 3 possibilities.
We have 3 possibilities.

- Hep B
- Hib
- MMR

- Hep immunization not due or contraindicated
 - Hep B deferred
 - Hep B immunization due
We have 3 possibilities.

- **Hep B**
- **Hib**
- **MMR**

- Hep immunization not due or contraindicated
- Hep B deferred
- Hep B immunization due
Rule Out: Any 1 of these

- Hep B immunization due
- Contraindication to Hep B vaccination
- age >= 19 years
- corrected patient acutely ill by judgement of care provider
Rule Out: Any 1 of these

- Hep B immunization due

- Contraindiation to Hep B vaccination
- age >= 19 years
- corrected patient acutely ill by judgement of care provider

Anaphylaxis
Rule Out: Any 1 of these

- Hep B immunization due

- Contraindication to Hep B vaccination
- Age ≥ 19 years
- Corrected patient acutely ill by judgement of care provider

Observation today of SNOMED-CT 39104002 = Illness
Rule In, ANY ONE OF:

- Hep B immunization due

- no previous hep B vaccination and age >= 1 months
- 1 previous Hep B dose, 4 weeks after first dose
- 2 Hep B doses already, 8 weeks after last dose, 16 weeks after 1st dose
- Birth dose given with early delivery of 3rd dose
- 1 previous Hep B dose, age >= 1 months, mother Hep B+
- age<7 days, previous hep B vaccination
| Rule In, ANY ONE OF: | | |
|----------------------|------------------|
| | Hep B immunization due |

- no previous hep B vaccination and age ≥ 1 months: 3
- 1 previous Hep B dose, 4 weeks after first dose: 2
- 2 Hep B doses already, 8 weeks after last dose, 16 weeks after 1st dose: 3
- Birth dose given with early delivery of 3rd dose: 4
- 1 previous Hep B dose, age ≥ 1 months, mother Hep B+: 3
- age ≤ 7 days, previous hep B vaccination: 3
Rule In, ANY ONE OF:

- Hep B immunization due

All N-ary criteria

- no previous hep B vaccination and age >= 1 months
- 1 previous Hep B dose, 4 weeks after first dose
- 2 Hep B doses already, 8 weeks after last dose, 16 weeks after 1st dose
- Birth dose given with early delivery of 3rd dose
- 1 previous Hep B dose, age >= 1 months, mother Hep B+
- age<7 days, previous hep B vaccination
Rule In, ANY ONE OF:

- Hep B immunization due

All N-ary criteria

- no previous hep B vaccination and age ≥ 24 months 2
- 1 previous Hep B dose, 4 weeks after first dose 3
- 2 Hep B doses already, 8 weeks after last dose or 16 weeks after 1st dose 3
- Birth dose given with early delivery of 3rd dose 4
- 1 previous Hep B dose, age ≥ 1 month, another Hep B+ 3
- age < 7 days, previous hep B vaccination 3

All of these must be true (and)
Guideline content will be executed by the SAGE Guideline Engine, interacting with the CIS via standards-based interfaces.
SAGE Guideline Execution: Neonatal Orders for Immunization

- Detect newborn admission
- Detect updates to newborn’s EMR

Guideline content will be executed by the SAGE Guideline Engine, interacting with the CIS via standards-based interfaces.
SAGE Guideline Execution: Neonatal Orders for Immunization

Guideline content will be executed by the SAGE Guideline Engine, interacting with the CIS via standards-based interfaces.

- Remind nurse to check immunization HX
- Remind nurse to check contraindications
- Remind nurse to obtain consent
- Create recommended (pending) immunization orders in CIS
- Notify physician of new pending orders

Local Clinical Information System

Queries

EMR Data

Patient Record

Execution System

Order Entry

Actions

Events
Neonate w/ HepB positive mother

Not So Simple

1. **Triggering event:** SAGE engine detects newborn admission.
2. **“Automatic enrollment”:** SAGE enrolls new patient.
3. **Context node:** Obtain and check patient age.
4. **Decision node:** Compute vaccinations that are due.
 a. **Evaluate** MMR and HepB.
 b. Query child’s record re: # of past immunizations.
 c. Mother’s HBsAG status (CEM)
5. **CEM-based query:** Has consent been obtained?
6. **CEM-based query:** Obtain child’s weight.
7. **Concept Expression:** e.g., “progressive encephalopathy”
8. **SAGE-initiated action:** Non-active orders sent to CIS.
9. **SAGE-initiated action:** Inbox.
Concept Expressions

- DTaP should be deferred if following presence criterion evaluates to true
Progressive Encephalopathy is encoded as
Boolean using SNOMED-CT codes

Progressive Encephalopathy

or

and

or

Progressive neurologic finding
12321232

Developmental delay
248290002

Encephalopathy
81308009

Tuberous sclerosis syndrome
7199000

Lenox-Gastaut syndrome
234418006
Guideline Execution:

SAGE listens for and detects context-specific events

[Diagram showing a step in a guideline with options for Primary care clinic check-in, Clinical Context, Precondition, Automation Mode, Transition Restriction, and Subguideline]
Guideline Execution:

SAGE executes encoded decision logic
Guideline Execution:

SAGE executes encoded decision logic

SAGE will query the patient EMR as necessary, and evaluate all decision criteria.
SAGE communicates actions to the CIS

Guideline Execution:

- HBA1C out of goal, due now, order
 - Order HbA1c
 - Inform PCP HbA1c is out of goal and due
SAGE guideline execution has generated patient-specific notifications to care providers.
Subject: If HbA1C is out of goal range, notify physician via inbox.

Message: This patient’s HbA1C is out of goal range.
SAGE guideline execution has caused 7 pending orders to be created in the CIS.
SAGE guideline execution can populate a patient-specific clinical care “flowsheet” with guideline recommendations, goals, and reference information.
SAGE guideline execution can support display of guideline rationale, accompanied by patient-specific clinical logic.
Accomplishments

We have:

- Shown that clinical guidelines can be encoded in a standards-based, sharable, computable format.
- Demonstrated the capability to represent complex guideline content and logic for both acute and chronic care domains.
- Used standard information models and terminologies to support interoperable transfer of medical knowledge.
- Addressed interoperability goals via:
 - A standards-based guideline model
 - A VMR-based interface to CIS
 - Standard web services to access EMR data
 - Standards based access to terminology services
Partial 2006 Plan

- Interoperability
 - Demonstrate interoperable transfer of medical knowledge
 - Tools to support deployment (mapping, binding, …)

- Standards
 - Tune vmr to emerging standards
 - Order Set Standard at HL7

- Demonstrations
 - Complete all three exemplars
 - ONCHIT and NIST
 - HIMSS
 - Surveillance study (Diabetes and Immunization)

- Final documentation
 - Reference CIS
 - Visible KB
 - Several publications
Azyxxi Collaboration

- **Demonstrate** interoperability: SAGE Engine runs w/ Azyxxi
- **Audience**: NIST, ONCHIT?, others?
- **Time line**: feasibility by 15 Feb, complete by 15 June
- **Guideline**: TBD
- **Steps**: agreement, plan schedule and efforts, interface experiments, plan CIS side user experience, toy example, “real” possibly new guideline, plan for, announce, and execute demonstration