
SAGE Guideline Model Specification 10/10/06

 Page 1 of 72

SAGE Guideline Model
Technical Specification

October 8, 2006

SAGE Consortium*

Document Editors:

Samson Tu, Julie Glasgow

* Consortium Partners: GE Healthcare, Apelon, Inc., Intermountain Healthcare, Stanford
University School of Medicine, The Mayo Clinic, University of Nebraska Medical Center

SAGE Guideline Model Specification 10/10/06

 Page 2 of 72

NOTATIONAL CONVENTIONS .. 4

1 INTRODUCTION.. 5

2 OVERVIEW OF SAGE PROJECT ... 6

2.1 Methodology of Guideline Knowledge Base Development.. 6

2.2 Architecture of SAGE Guideline Decision-Support System... 7

3 DESIGN GOALS.. 8

4 COMPONENTS OF GUIDELINE MODEL... 10

4.1 Guideline Class.. 11
4.1.1 Guideline_Metadata ... 11

4.1.2 Enrollment and De-enrollment Criteria.. 12

4.1.3 Configurable parameters .. 13

4.2 Evidence Statements ... 13

4.3 Recommendation_Set ... 14
4.3.1 Activity_Graph... 14

4.3.2 Decision Map ... 25

4.4 Subguideline .. 28

4.5 Decision Model .. 29

4.6 Action Specification .. 32

4.6.1 Actions that operate on VMR classes .. 33

4.6.2 External_Action ... 33

4.6.3 Aggregations of Actions... 34

4.6.4 Deprecated Action Specifications .. 34

4.7 Expression Language.. 36

4.7.1 GELLO... 38

4.7.2 Basic Data types ... 39

SAGE Guideline Model Specification 10/10/06

 Page 3 of 72

4.7.3 Variable .. 40

4.7.4 Function.. 40

4.7.5 VMR_Query... 41

4.7.6 VKB_Query ... 43

4.7.7 Relation_Query .. 44

4.7.8 Conditional_Expression ... 44

4.7.9 Criteria Templates .. 45

4.8 Order Set.. 54

4.9 Use of External Knowledge Sources.. 56

4.10 Interchange Format... 59
4.10.1 XML Schema .. 59

4.10.2 XML instance.. 64

5 INFORMATION MODELS.. 65

5.1 Healthcare Organization Model .. 65
5.1.1 Resources ... 65

5.1.2 Event Model ... 65

5.2 Patient Data Models.. 66
5.2.1 Virtual Medical Record (VMR) ... 67

5.2.2 Clinical Expression Models ... 67

5.2.3 Clinical DataSet.. 68

APPENDIX: CLASS HIERARCHY FOR SAGE GUIDELINE MODEL (WITH LINKS
TO DETAILED SPECIFICATION OF EACH CLASS).. 70

ACKNOWLEDGEMENT.. 70

6 REFERENCES... 70

SAGE Guideline Model Specification 10/10/06

 Page 4 of 72

Notational Conventions

Class names (e.g., Guideline) will be in bold.

Slot names (e.g., label) will be in italic.

Values or possible values of slots (e.g., “JNC 7 Hypertension Guideline”) will be in
Courier New font.

The naming conventions can be combined. Thus, a slot value that is also a class will be in bold
Courier New font.

Note that not all words in bold are class names and not all italicized words are slot names.

The grayed-out text describes features of the guideline model not implemented by the SAGE
Execution Engine as of November 30, 2006.

SAGE Execution Engine implementation notes are underlined.

SAGE Guideline Model Specification 10/10/06

 Page 5 of 72

1 Introduction

In recent years, clinical guidelines and protocols have gained support as the vehicles for
promulgating best practices in clinical medicine. In the hope of disseminating best practices,
reducing practice variation not supported by evidence, and minimizing inappropriate use of
resources, professional organizations, government agencies, and health-care institutions have
been publishing clinical guidelines at an increasing rate. This pace far exceeds our ability to
disseminate that knowledge, and far outpaces the ability of individual clinicians to keep up.
Similarly, the technology for bringing situation-specific decision support for guideline-based
care into clinical settings has not matched the increased flow of guideline production.
Organizations which have implemented guideline-based decision-support systems have either
created custom software or used commercial software packages that are often little more than if-
then rules. Research groups that develop sophisticated guideline modeling formalisms and
execution software usually have to limit the application of their technology to their home
institutions. Efforts have gone into developing shared models for representing medical decisions
and clinical guidelines (Hripcsak et al., 1994l; Peleg et al., 2003) . However, as an experiment to
share Medical Logic Modules (MLMs) across two institutions (Pryor et al., 1993) indicated, it
takes more than a formalism for medical logic to accomplish sharing of computable medical
knowledge. Lack of standards in terminologies and in data models for patient information
requires re-coding of significant parts of the MLMs. Boxwala et al. elucidated a set of
requirements for sharable guidelines that include the capability to represent different types of
guidelines, methodology for local adaptation, integration with institutional systems, use of an
explicit medical concept model, allowance for multiple modes of use, and revision management
of guidelines (Boxwala et al., 2001). Work in United Kingdom to develop guideline-based
decision support for primary care (Johnson et al., 2001a) suggested that reuse of a guideline
knowledge base is possible as part of an infrastructure that includes medical record query
interface, terminology mediation, unit-conversion mediation, and act interface. The SAGE
(Standards-Based Sharable Active Guideline Environment) project, a collaboration among
research groups at IDX Systems Corporation, the University of Nebraska Medical Center,
Intermountain Health Care (IHC), Apelon, Inc., Stanford Medical Informatics, and the Mayo
Clinic, seeks to build on these and other prior work to create the technological infrastructure for
integrating interoperable computer-based guidelines into enterprise clinical information systems.
The end points of the project include end-to-end demonstrations of guideline encoding,
localization, and execution at Mayo and Nebraska for several complex guidelines.

This document gives an informal description of the SAGE guideline model in the context of the
technological infrastructure that the project is developing. We first motivate this work by
discussing considerations that led us to develop a new model. Then we give an overview of
development methodology of the SAGE project and the SAGE architecture for guideline-based
decision support. We describe components of the guideline model with emphasis on how the
model interacts with existing standards such as Workflow Management Coalition’s process
model and with other standard-based components of the infrastructure. This document is
accompanied by a set of javadoc-style documentation of every class and slot in the SAGE
guideline model. References to guideline model classes will be hyperlinked to the javadoc
documentation.

SAGE Guideline Model Specification 10/10/06

 Page 6 of 72

guideline
literature

clinical
scenarios

reference
terminology

virtual
medical
record

clinical
expression

models

vocabulary
inventory

2
guideline

logic

1
concepts in
guideline

3 4

5

localized
guideline KB

Distribution
Localization

and
Binding

guideline
KB

6

guideline
model

7

We will use UML diagrams to show components of the SAGE guideline model, and screen
dumps from the Protégé knowledge engineering environment to illustrate how the guideline
model is instantiated to encode the immunization guideline.

2 Overview of SAGE Project
To accomplish the goal of creating the technological infrastructure for guideline-based clinical
decision support, the SAGE project has defined an overall methodology for developing guideline
knowledge bases and an architecture for using knowledge base in the context of providing
decision support through a clinical information system at the point of care.

2.1 Methodology of Guideline Knowledge Base Development
The SAGE guideline modeling methodology is a seven-step deployment-driven process1
depicted in Figure 1. The formalization of guidelines in terms of a computable guideline model
must be informed by the usage scenarios of guidelines in the care process. The usage scenarios
identify opportunities for providing decision support, the roles and information needs of care
providers, and the relevant guideline knowledge. Thus, once the decision to implement a
guideline has been made, the SAGE guideline knowledge base development methodology
requires that clinicians first create clinical scenarios that are detailed enough to support
integration of guideline recommendations into real clinical workflow. When the guideline-based
decision-support system is to be deployed in specific institutions, the care settings of these
institutions need to be studied so that the scenarios that drive the modeling process match those
in the actual settings. In the second step of the methodology, clinicians analyze the information
content of the desired guideline recommendations and distill, from guideline texts, medical
literature, and their clinical expertise, the knowledge and logic needed to generate these
recommendations. This distillation process requires clinicians to select, interpret, augment, and

1 See Tu, S. W., Musen, M. A., et al. (2004). Modeling Guidelines for Integration into Clinical
Workflow. Medinfo, San Francisco, CA, USA, 174-178. for a more detailed exposition of the
guideline modeling methodology. In this document, we added a distribution, localization, and
binding step that was out of scope for the Medinfo paper.

Figure 1 Methodology for formalizing a clinical practice guideline

SAGE Guideline Model Specification 10/10/06

 Page 7 of 72

operationalize guideline statements in terms of unambiguous concepts and of data that may be
available (third step). Thus, for example, in the development of an immunization guideline
knowledge base, terms like “hepatitis B vaccine” and “anaphylactic reaction” are extracted and
recorded. In the fourth step, concepts identified as part of the required guideline logic are
instantiated as detailed data models (called clinical expression models) that correspond to
constraints on classes of the virtual medical record” (Johnson et al., 2001b). A clinical
expression model for a guideline concept spells out precisely how patient data corresponding to
that concept would be represented as instances of a VMR class. For example, in the SAGE
VMR, we model allergy information as instances of an ‘AdverseReaction’ class that has
attributes such as ‘code,’ ‘substance,’ ‘reaction,’ and ‘effective time’ (time during which a
patient is presumed to be allergic to the allergen). A detailed model for “Anaphylactic reaction to
hepatitis B vaccine” would say that such data will be modeled as instances of AdverseReaction
class where the reaction slot is constrained to be a concept subsumed by “anaphylactic reaction”
and the ‘substance’ slot is constrained to be a kind of hepatitis B vaccine. The fifth step of the
methodology calls for specifying guideline concepts in terms of standard terminologies. As we
will discuss later, the use of standard terminologies requires significant extensions and must be
defined in the context of the detailed data model. The sixth step in the guideline knowledge
development process is the translation of the clinical scenarios and guideline logic into a
computer-interpretable model of guidelines. The assumption is that clinicians will be working
with analysts or knowledge engineers who have modeling expertise in formalizing the guideline
knowledge through a Guideline Workbench (Shankar et al., 2002; Shankar et al., 2003). Finally,
before a formalized guideline can be installed and used in a local institution, its medical content
must be reviewed and revised (in what we call the localization process) and its data models,
terminologies, organization assumptions (roles, events, and resources) must be mapped to those
of the local institution (in what we cal the binding process).

2.2 Architecture of SAGE Guideline Decision-Support System
The SAGE Guideline Model exists in the context of the SAGE Guideline Decision-Support
System (GDSS), whose center piece is the SAGE Execution Engine. The SAGE Execution
Engine provides decision-support for guideline-based care by loading in the guideline knowledge

SAGE
Execution

Engine
CISVMR/

Action
Svcs

Event
Listener

Terminology
Server

VMR Service calls

Action Service calls

Event
Notifications

Term.
Functions

Figure 2 SAGE Guideline Decision-Support System Architecture

SAGE Guideline Model Specification 10/10/06

 Page 8 of 72

base and by interacting with the clinical information system (CIS) via an event listener and a set
of services. Figure 2 illustrates the architecture of the system.

The event listener is the mechanism by which the SAGE Execution Engine is notified of state
changes in the CIS. State changes in the CIS may involve workflow events, such as a patient
checking into a particular clinic, or entry of data into the electronic health record. The listener is
implemented as a web service (W3C, 2002) allowing for broad interoperability and can be used
by any conforming CIS to publish events. Depending on the CIS capabilities, a terminology
server may be present in a SAGE GDSS. The terminology server encapsulates standard
terminologies and implements terminology subsumption and conversions that may be used by
the engine. The VMR/Action services are interfaces into both patient data and application
functionality provided by the CIS. The VMR services are used to get information from the CIS
and the Action services are used to initiate actions within the CIS. The VMR/Action services
can be viewed as wrappers around existing CIS data and functionality and support
interoperability by presenting a unified view of clinical information systems to the guideline
execution engine. The intention of the SAGE project is to align the VMR/Action services
interfaces with standards such as HL7 messages and to propose these interfaces as standard
access/action mechanisms into CIS entities external to the CIS such as the guideline execution
engine. It is also the intention of the SAGE project to use the same execution engine and event
listener across any CIS that conforms to the specifications of the VMR/Action services.

3 Design Goals
The literature on guideline models is full of alternative methods for formalizing clinical
guidelines and protocols. What is the justification for starting yet another guideline model? We
agree with the requirements articulated in Boxwala et al. (Boxwala et al., 2001) (although,
instead of pursuing multiple uses of guideline knowledge bases, the project is scoped to
concentrate on the use of guidelines in decision support in patient-care settings). Thus the project
shares many of the goals of the projects such as the ones reviewed and compared in earlier
studies (Peleg et al., 2003).

Three considerations led us to our decision to start a new model. First, with the emergence of
clinical standards such as Health Level Seven’s Version 3 (HL7 v3) Reference Information
Model (RIM) (Health Level 7, 2003) and College of American Pathologists’s SNOMED Clinical
Terms (Wang et al., 2002a), we believe that we have the opportunity to build a guideline model
from ground up to take advantage of these standards in a systematic way. Thus, for example,
instead of defining our own data types and providing mechanism for user-defined patient data
model as GLIF3 (Peleg et al., 2000) does , we incorporate the HL7 v3 data types directly in into
our model and we work within HL7 to help to define the Virtual Medical Record (VMR) as the
standard view of patient data assumed in guideline modeling. However, as we will discuss in the
paper, make use of standards for modeling guideline is not a straight forward process. Rarely do
existing standards completely satisfy the requirements of guideline modeling. For example, we
need to develop mechanisms for defining new concepts based on terms in standard
terminologies. Similarly, we need to extend a standard process model to account for decision-
making activities in guidelines. Thus the elucidation of the complex relationship between
existing standards and requirements of guideline modeling and deployment is one of the themes
of the SAGE project.

SAGE Guideline Model Specification 10/10/06

 Page 9 of 72

The second consideration is SAGE’s approach to integrating guideline-based decision support
with the workflow of care process. That the success of clinical decision-support systems (DSSs)
depends heavily on how the system is integrated into the workflow of the care process is widely
recognized (Fieschi et al., 2003). Interpretation of the integration problem, however, varies
widely. For alert-and-reminder systems, integrating into the workflow can mean the timing,
modality, and format of notification (Krall et al., 2002). For implementations of chronic-disease
guidelines in the primary care setting, workflow considerations may be used as factors in the
design of the user interface and decision-support services that a system provides (Shiffman,
1994). In hospital environments, the protocol for managing a specific medical condition may
drive the workflow that sequences care tasks and schedules resources (Quaglini et al., 2000). The
SAGE project takes the approach that, as a provider of decision-support services to clinical
information systems, SAGE will not be in control of host systems’ workflow management. Thus,
in SAGE’s modeling approach, we are not required to model detailed workflow as, for example,
University of Pavia’s careflow methodology proposes. Instead, the SAGE system will respond
to opportunities for decision support in the care process. We need to model enough of the
workflow contexts to recognize appropriate events that should trigger decision-support services.
Upon receipt of such triggering event, the SAGE decision-support system will deliver, through
existing functions of the clinical information system, guideline-based recommendations
appropriate for members of a care team. Thus, for example, physicians might see “inbox”
notifications of guideline-based recommendations, while nurses might be presented with an
active care-reminder flowsheet that is populated with a pre-authorized order set. The implication
of this approach for the guideline modeling is that guideline knowledge will be embedded in an
event-driven reactive system that takes into account clinical and organization contexts such as
care setting and provider roles. Instead of just creating an electronic version of a clinical practice
guideline, guideline modeling in SAGE formalizes guideline knowledge being used in specific
scenarios and settings.

The third consideration in our decision to start a new guideline line is that, in recent years, much
interchange and cross-fertilization have taken place in the guideline modeling community.
Starting with workshops such as the ones sponsored by InterMed in 1999, Open Clinical in 2000,
and University of Leipzig in 2001, and continuing with a number of comparison papers (Wang et
al., 2002b; Peleg et al., 2003), workers in the guideline modeling community have gained much
better understanding of the commonalities and differences among different guideline modeling
approaches and of the design choices made in them. The SAGE project has given us the
opportunity to synthesize prior work and, wherever possible, to establish mappings between the
SAGE model and other models. Thus, the work on SAGE guideline model builds directly on
prior models such as GLIF (Boxwala et al., 2004; Peleg et al., 2004), EON (Tu et al., 1999),
PROforma (Fox et al., 2000), GUIDE (Quaglini et al., 2000), and PRODIGY (Johnson et al.,
2000).

In summary, the SAGE project seeks to create a guideline model that

• is sufficient to encode guideline knowledge needed to provide situation-specific decision
support

• uses standardized components that allow interoperability of guideline execution elements
with the standard services provided within vendor clinical information systems.

SAGE Guideline Model Specification 10/10/06

 Page 10 of 72

• includes organizational knowledge to capture workflow information and resources needed
to provide decision-support in enterprise setting

• synthesizes prior guideline modeling work for encoding guideline knowledge needed to
provide situation-specific decision support and to maintain linked explanatory resource
information for the end-user

4 Components of Guideline Model
The Institute of Medicine report on clinical practice guidelines defines guidelines as
“…systematically developed statements to assist practitioner and patient decisions about
appropriate health care for specific clinical circumstances” (Field et al., 1990). We conceptualize
these systematically developed statements as a set of recommendations consisting of some usage
context (specific clinical circumstances) where some course of actions are preferred over others
(decisions about appropriate health care) in order to reach the best possible decisions. These
recommendations are defined for some target population as defined by a set of enrollment
criteria. These enrollment criteria, as well as decision criteria that we will discuss later, have to
be expressed in a formal expression language that make use of medical concepts and may query
evidence statements or external knowledge sources. Guideline actions are operationalized in
terms of a set of CIS actions (Figure 3).

A SAGE guideline knowledge base, by design, is developed with specific usage scenarios in
mind. It cannot be seen as merely a computer-interpretable form of the original guideline. The
construction of the guideline knowledge requires selection from and interpretation, synthesis,
and often disambiguation of the source literature. The original guideline is only one of possible
many source documents used in the construction process. The guideline knowledge base should
be seen as a new “guideline” that requires the same process of review, validation, and testing as
the any published guideline. Thus, the guideline knowledge base is annotated with metadata
comparable to those that should be present for paper-based guidelines.

As we described in the overview of the SAGE guideline modeling process, a key part of the
process is the formalization of concepts used in a guideline in terms of standard terminologies
and information models. To the extent that these terminologies and models can be standardized
and mapped to those of a particular clinical information system, a guideline knowledge base and
guideline execution engine have the possibility of achieving semantic interoperability. The
components of the SAGE guideline model and the necessary semantic layer of standard
terminologies and information models are shown in Figure 3.

In the rest of the section, we describe in detail the components of the SAGE guideline model,
their design rationales and their use in clinical decision support. We will illustrate the model
components using examples from SAGE knowledge bases that were developed based on an ICSI
immunization guideline (Institute for Clinical Systems Improvement, 2002) and on an American
Diabetic Association guideline (American Diabetes Association, 2002).

SAGE Guideline Model Specification 10/10/06

 Page 11 of 72

Expression
Language

Guideline
Model

Decisions Actions
organizes

Guideline
Recommendation Set Context

Terminologies, Information Models, Order Sets
Organization Model, Resources

Action Spec
(CIS Actions)

Meta Data

Enrollment
Criteria

Decision
Model

Host Clinical Information System (CIS)

Evidence
Statements

External
Knowledge

Sources

Guideline
Concepts

4.1 Guideline Class
A guideline is an instance of Guideline class. In addition textual label and description slots,
each guideline is linked to an instance of Guideline_Metadata, a set of enrollment criteria, a set
of de-enrollment criteria, a set of configuration parameters, evidence statements, and a collection
of recommendation sets. The evidence statements and recommendation sets of a guideline
constitute the heart of a guideline are its collection of recommendations. They are described in
Section 4.2 and Section 4.3 respectively.

4.1.1 Guideline_Metadata

The metadata component of the SAGE guideline model is not fully developed, as the metadata
that annotate a SAGE guideline play no role in computing patient-specific recommendations.
Currently the metadata component consists of selected high-level GEM (Shiffman et al., 2000)
attributes such as identity, developer, method of development, and revision plan, and additional
attributes, such as change log, that are useful for communication within the project (Figure 4).
We consider the work to define guideline reporting requirements (Shiffman et al., 2003) and to
annotate and index guidelines for search and retrieval (Shahar et al., 2003) highly
complementary to the work the SAGE project. We expect to incorporate much of those results in
specifying the metadata of a SAGE guideline

Figure 3 Top-level structure of SAGE Guideline Model and the supporting
terminological and information models

SAGE Guideline Model Specification 10/10/06

 Page 12 of 72

Figure 4 Top-level structure of the SAGE guideline model

4.1.2 Enrollment and De-enrollment Criteria

We expect that for a guideline to be applied in the management of a patient, the patient must be
enrolled in that guideline. Enrollment can be automatic, as in the case of an immunization
guideline, which is, by default, applied to all patients, or manual, which requires a clinician’s
(and possibly the patient’s) explicit consent. In either case, separating out enrollment_criteria as
a distinguished attribute allows applications to check a patient’s eligibility for the guideline
easily. All parts of enrollment criteria must be true before a patient is enrolled in the guideline.
Like the inclusion and exclusion criteria of clinical trials, enrollment criteria are entry conditions
that don’t have to hold after a patient is enrolled.

Similarly, a distinguished de-enrollment_criteria attribute allows the SAGE execution engine to
detect enrolled patients who should be taken off a guideline. Conditions that suggest that a
guideline is no longer appropriate for an enrolled patient should be encoded as de-enrollment
criteria. If any de-enrollment criterion is true, de-enrollment should be considered.

Implementation Note: Currently SAGE GEE enrolls patients automatically. Some events are
considered enrollable event (e.g, new problem event sent by Carecast). The event triggers SAGE
engine to evaluate enrollment criteria of guidelines for which the patient is not rolled, and enroll
the patient for whom enrollment criteria evaluate to true. SAGE GEE then sends internally
generated Enrollment event, which may trigger an Activity Graph recommendation set.

SAGE Guideline Model Specification 10/10/06

 Page 13 of 72

The types and structure of Criterion classes are described in Section 4.7.9.

4.1.3 Configurable parameters

A guideline may allow values like thresholds for high values of laboratory test results to be
configurable. Such configurable values are modeled as instances of the Variable class (See
Section 4.7.3). The configurable_parameters slot holds a collection of such variables for easy
inspections and modification.

4.2 Evidence Statements

The purpose of the evidence statement construct is to provide a general method to represent
guideline statements regarding the relationships between clinical conditions and interventions
discussed in a guideline. The representation allows annotation of relation type (e.g., reason for),
relation qualifying (e.g., compelling), links to evidence sources, strength of evidence, and subject
of statement (e.g., prophylaxis of X, treatment of Y).

An Evidence_Statement class allows a statement like “for the treatment of hypertension,
presence of diabetes is a compelling indication for the use of ACE inhibitor (Strength of
evidence ICSI grade 1 conclusion, see references “great big clinical trial in the sky” and “jnc 7
guideline”). The attributes of the Evidence_Statement class are as follow:

• label: a descriptive string

• statement_subject: a terminology concept code representing a grouping of evidence
statement used in a particular context (e.g., “treatment of hypertension”)

• relation_type: a terminology concept code representing a relationship between a condition
and an intervention (e.g., indication) Implementation Note: SAGE Execution Engine does
exact match of relation_type (no subsumption)

• relation_qualifier: a terminology concept code representing a relationship

• from: a criterion that defines the patient condition that is relevant to the relation to the
intervention

• to: a terminology concept code representing the intervention being considered.

• strength_of_evidence: a terminology concept code representing the strength of evidence for
the relation between condition and intervention

• references: A collection of Supplemental_Material.

SAGE Guideline Model Specification 10/10/06

 Page 14 of 72

Figure 5 An instance of Evidence_Statement, encoding the statement “In the context of
treatment of hypertension, the use of ACE inhibitor may have favorable effect on diabetes.”
JNC7 guideline is the reference for this statement.

4.3 Recommendation_Set

Recommendation statements represent the fundamental assertions of guidelines. In the SAGE
guideline model we propose the concept of a recommendation set defined as a collection of
related recommendations that are applicable in one or more shared contexts and that are
organized according to a computable formalism. A context is defined by a combination of a
clinical setting (e.g. outpatient encounter in a family medicine clinic), triggering events that
make the context active (e.g. patient checking into a clinic), the care provider to whom the
recommendation is directed, and the relevant patient states (e.g. a hypertensive patient who has
been prescribed anti-hypertensive agents). Within each context, a recommendation may describe
the preferred choice in a management decision (e.g. whether to administer the second dose of
hepatitis B vaccine to a child), or it may recommend a series of actions be carried out (e.g.
perform history and physical before ordering certain tests). A recommendation set specifies how
decisions and actions are related to each other in a specific context. A single guideline may
encompass multiple recommendation sets. For example, an immunization guideline may have
one recommendation set for a new-born baby in a neonatal clinic, a recommendation set for
pediatric patient in an outpatient clinic, and a third for an adult patient in an outpatient clinic.

We propose that recommendation sets consisting of either Activity_Graphs that represent
guideline-directed processes or Decision_Maps that represent recommendations involving
decisions at a time point.

4.3.1 Activity_Graph

We first describe the Activity_Graph as a type of process model for formalizing the description
of inter-related activities. Then we describe the usage of Activity_Graph in encoding SAGE
guidelines. We describe each component of an Activity_Graph and finish with an example.

SAGE Guideline Model Specification 10/10/06

 Page 15 of 72

4.3.1.1 Process Model

We propose an Activity_Graph formalism to describe relationships among different activities in
terms of a process model. Several process models have been proposed as standards in the
literature. We adopted the Workflow Management Coalition’s Workflow Process Definition
Language (WPDL) (Workflow Management Coalition, 1999) as the basis for the semantics of an
Activity Graph. We do so because WPDL’s object-oriented feature, the close correspondence
between WPDL and the process specification of existing guideline models, prior experience with
WPDL in the guideline-modeling community (Quaglini et al., 2000), and the available literature
and software for workflow management systems. In WPDL, a process consists of a collection of
activities each of which is a unit of work that is carried out by a combination of organizational
resources and/or computer applications. Activities are related through precedence relations as
defined by transition and transition conditions, and by hierarchical decomposition relations as
defined by subflow relationships. Sets of activities may be carried out sequentially, concurrently,
or in any order, as indicated by split and join constraints. Dummy activities that have no
associated work (called Route activities in WPDL) can be used solely for specifying join and
split constraints among other activities. Other information, such as priority and automation mode
(i.e., whether the activity can be started or stopped automatically) can be attributes of an activity.
The model also allows extensions through addition of attributes that are necessary for particular
applications.

A generic workflow process defined in terms of activities and transitions among them, at first
glance, does not make distinctions, such as contexts and decisions, which we’ve argued, are
important aspects of a computable guideline. Thus, it is necessary to extend the standard process
model. Decisions we can model as a specialized activity, where the result of decision making is
commitment to selected courses of actions, and the decision-making application. A context
characterized by a combination of clinical setting, care provider, patient condition and therapies
is more of a description of the state of the world than an activity. Nevertheless we will
incorporate the notion of context in the process model as a specialization of the WPDL Route
class.

4.3.1.2 Usage of Activity_Graph

In the SAGE guideline modeling approach, we organize guideline recommendations by their
scenarios of usage. A scenario is an abstraction of a care process that is implemented for specific
roles, entities and actions within an enterprise. Thus, out-patient encounters, telephone triages,
automated screening of patients for diagnostic tests, and in-patient administration of
chemotherapies are all examples of scenarios. Each scenario involves interactions (i.e. exchange
of information) among the SAGE decision-support system, components of the clinical
information system, and possibly (through the CIS) human users.

A scenario is characterized by one or more Context that are defined by a combination of (1)
clinical setting (e.g. out-patient internal medicine clinic), (2) patient state (e.g. patient having
diagnosis of hypertension), (3) patient management state (e.g. patient receiving anti-hypertensive
medications), (4) roles played by clinicians involved the care process, and (5) events that trigger
the context. Alerts and reminders, recommendations for data collection and medical decision
making are encoded as dependent on these contexts. In the SAGE guideline model, these
context-dependent guideline logic are modeled as parts of “recommendation sets” (see below).

SAGE Guideline Model Specification 10/10/06

 Page 16 of 72

A guideline session is a run-time sequence of interactions between SAGE and a component of
the clinical information system (and through it, external users) that is playing some role. Thus,
for example, during an out-patient encounter, there may be simultaneous sessions between
SAGE and a nurse and a physician. A session is always started by some triggering event. SAGE
executes the logic as represented in an encoded guideline, interacting with the clinical
information system (and, through it, possible external users) until exhausts all possible paths in
the top-level activity graph. More precisely, a triggering event that activates a Context node
starts a session that has an associated branch count. The branch count is incremented each time
an execution thread transitions out of a node and decremented when a transition is made into a
node. A session ends when there is no possible transition out of node and the branch count is
zero. A transition out of a node if not possible if

1. SAGE execution of the guideline logic reaches a terminal point, with no additional
recommendation to evaluate

2. SAGE execution reaches an Action node that has previously being executed.

3. SAGE execution of the guideline logic reaches a point that requires waiting for additional
events. The session is considered suspended until the event being waited on triggers the re-
activation of the session. (Thus, a trigger may activate a guideline action that represents the
continuation of guideline execution in a particular context. Hence a context is not always the
beginning of a session.)

SAGE Guideline Model Specification 10/10/06

 Page 17 of 72

4.3.1.3 Activity_Graph_Node

An Activity Graph is a specialization of a WPDL process consisting of Action, Decision,
Context, and Route nodes (Figure 6). All Activity Graph nodes have the following properties:

automation mode: specifies whether this activity can be automatically started or stopped by
software. The manual alternative is for a user to interactively indicate whether this activity can
be started or stopped. The value is an instance of Automation_Mode class that has start_mode
and finish_mode slots.

transition restriction: specifies control information in relation to activities preceding and
following a particular activity. It is an instance of Transition_Restriction class that has two
slots:

split_constraint (AND or XOR): if the value is AND, then all subsequent activities need to
be evaluated for possible activation. If the value is XOR, then the outgoing transitions are
evaluated in order, and the first transition that evaluates to true is taken.

Figure 6 The structure of the Activity_Graph class. Only selected slots are displayed.

SAGE Guideline Model Specification 10/10/06

 Page 18 of 72

join constraint (AND or XOR): if the value is AND, the all active preceding activities must
be completed and the transition conditions evaluate to true before the current activity is
enabled. If the value is XOR, then the current activity is enabled as soon as the first
preceding activity completes and the associated transition condition evaluates to true. The
active threads that may reach this point subsequently will not enable the node multiple
times.2

Thus the AND split constraint allows concurrent activities to be started following the
current node, and the join constraint synchronizes multiple threads of execution.

Won’t execute same node again during a invocation of event (visited)

scheduling constraint: The scheduling constraint is a Boolean criterion that specifies temporal
conditions that must be satisfied before an enabled activity is carried out. A node is enabled if it
is triggered or if its join constraint is satisfied. The enabled node is activated either manually by
a user or automatically if its automation mode is AUTOMATIC and the scheduling constraint is
satisfied.

A (non-context) activated activity can be completed or aborted. If an activity is completed, then
the split constraint determines which following transitions are evaluated for next steps to take.

The Context, Action, and Decision classes further share a set of properties:

triggering_events: a set of Event instances (described in Section 5.1.1) each of which can either
initiates processing of a scenario as defined by a Context node, or resume processing of a
Decision or Action node that has been suspended while waiting for the events in the
triggering_events set.

subguideline: an instance of the Subguideline class that is described in Section 4.4. The
intention of allowing subguidelines in each of Context, Decision, and Action classes is to allow
hiding of details when appropriate. A subguideline of a Context node should recommend actions
that are relevant in that context, regardless of any subsequent decisions or actions3. A sub-
guideline in a Decision node should recommend actions that are helpful in making the decision
(e.g. obtaining relevant information about patient state). Finally, a sub-recommendation in an
Action node should refine the actions specified in the Action node.

Implementation Note: SAGE GEE does not make use of subguidelines in Decision or Context
nodes.

2 The semantics of the XOR join correspond to what has been called “Discriminator” join, where
we allow the first incoming branch to trigger the activity following the discriminator, and to keep
track of the other branches. Once all branches have completed, the discriminator is "reset" and
the next incoming branch to finish can again trigger it. See Kiepuszewski, B., ter Hofstede, A. H.
M., et al. (2003). Fundamentals of Control Flow in Workflows. Acta Informatica 39(3): 143-209.
for a detailed discussion of the semantics of control flow in workflows.
3 The use of subguideline in a Context node corresponds to PRODIGY and EON models’
Consultation_Guideline construct. Its primary use was to hide process-oriented actions in a
Decision Map. In the SAGE Activity Graph, the same semantics can be obtained by having
concurrent branching (AND split) of Actions.

SAGE Guideline Model Specification 10/10/06

 Page 19 of 72

references: a set of Supplemental_Material instances. Supplemental_Material are materials
that support the recommendations made in a guideline. In addition to a textual label, they have
the following properties:

role: The role of this supplemental documentation in the recommendations of this
guideline. It can be one of evidence, comment,
patient_education_material, illustration, source, or
consent_form.

keywords: textual keywords related to this Supplemental_Material instance.

URLs: The universal resource locations for this Supplemental_Material instance.

metadata: The bibliographic information about this Supplemental_Material instance.

abstract: A textual summary of this Supplemental_Material instance

4.3.1.3.1 Context

Context is a basic element of the SAGE guideline model. Context nodes specify and declare the
assumptions made about the health care enterprise work model that are otherwise implicit in
every instance of a guideline implementation. Using this approach, SAGE does not control the
enterprise work model, but does expect to enumerate the workflow parameters and function
within it. In the example of Figure 9, the first Context specifies the context of a patient checking
into an outpatient primary-care clinic, while the second Context is triggered by a primary care
nurse accessing the patient record.

In terms of the workflow process model, a Context node is a specialization of a WPDL Route
activity that has been extended to represent the clinical and organizational situation in which one
or more guideline recommendations are to be applied. It is defined by a combination of (1)
clinical setting (e.g. out-patient internal medicine clinic), (2) patient state (e.g. patient having
diagnosis of hypertension), (3) patient management state (e.g. patient receiving anti-hypertensive
medications), (4) roles played by clinicians involved the care process, and (5) events that trigger
the context.

Context nodes are complex objects. Their defining attributes specify their trigger events,
clinical setting and patient state. Additional attributes specify the enterprise information-
processing needs and resources employed during the session. These enterprise resources are
modeled within a health-care organizational ontology, which is meant to define all roles, events,
resources and settings that are material participants in guideline recommendation sets (see
Section 5.1).

In addition to properties inherited from Activity_Graph_Node, properties of a Context node
include:

triggering_events: the set of events that can trigger this context for evaluation

precondition: the condition that should be true for this context to become active. It can be
overridden by a clinician.

clinical_context: an instance of Clinical_Context that specifies the nature of the clinical
interaction:

Clinical setting for the scenario

SAGE Guideline Model Specification 10/10/06

 Page 20 of 72

Clinical roles involved in the care process being modeled

Clinical resources (material, equipment, machines)

informatics_context: an instance of Informatics_Context that specifies the nature of the man-
machine interactions within the scenario

Communication utilities employed in the scenario process

Knowledge-based utilities as required by the scenario

Implementation Note: Knowledge-based utility of Population model alerting engine: Get
all patients who are enrolled in the guideilne and execute the context for each patient.
Triggering event that initiate the context can be for any patient. (Population model
alerting engine: is treated as another triggering event.)

The execution semantics of Context nodes is roughly as follow:

1. A CIS event matches the triggering event for one or more Context nodes in any SAGE
activity graph in any SAGE guideline

2. If event carries a patient id, verify that the patient is enrolled in the guideline, then
 evaluate the precondition of the Context node (possibly separate parallel sessions for
separate triggering event. (However, Inquiries won’t be asked more than once, i.e.,
Pending states won’t be executed more than once). The state of patient on a
recommendation set is global regardless how many clinicians are accessing the
guideline.

Implementation Note: SAGE Execution Engine assumes all events have patient id

3. If the event does not carry a patient id, then, for each enrolled patient, evaluate the
precondition of the Context node

4. If the precondition of the Context node evaluates to true, then Context node is enabled

Implementation Note: The SAGE Execution Engine does not look at the
scheduling_constraint property, so there is no enabled state in the current implementation.

5. The node is activated subject to the constraints of the scheduling_constraint property

6. Once activated, if the Context node has a subguideline, then subguideline is called. If the
invocation of the subguideline is synchronous, then completion of the Context node
waits for the completion of the subguideline; otherwise execution of the Context node is
complete, and the flow of control follows that of the transition_restriction property.

4.3.1.3.2 Decision

Decision nodes support representation of decision knowledge required to recommend a choice
among alternatives. The contract between a recommendation set and a Decision node is that, at
the end of the decision-making process, commitment to one or more of the alternatives are made.

In terms of the workflow process, a Decision node is specialization of a generic WPDL activity.
A Decision node is an activity that has been extended with a decision model attribute, through
which decision knowledge for determining preferences among alternative courses of actions can
be represented.

SAGE Guideline Model Specification 10/10/06

 Page 21 of 72

In addition to properties inherited from Activity_Graph_Node, Decision node has:

automation mode: specifies whether this activity can be automatically started or stopped by
software. The manual alternative is for a user to interactively indicate whether this activity can
be started or stopped. The value is an instance of Automation_Mode class that has start_mode
and finish_mode slots.

addressee: the agent with whom the guideline is interacting in this activity.

decision_model: an instance of Decision_Model that encapsulates the decision-making
knowledge and methodology to generate preferences among the alternatives

triggering_events: a set of events that may trigger the decision node, if it is suspended.

subguideline: an instance of Subguideline that allows guideline encoder to describe what need to
be done to facilitate making a decision at this point.

The execution semantics of a Decision node is roughly as follows:

1. Once the Decision node is enabled and activated (see Section 4.3.1.3), if it has a
subguideline, call that subguideline.

2. If the invocation of the subguideline is synchronous, then completion of the Decision
node waits for the completion of the subguideline before evaluating the decision_model;
otherwise it evaluates the decision_model immediately.

3. The result of evaluating the decision_model is a preference ordering of the alternatives
following the Decision node. (Implementation Note: SAGE Execution Engine requires
yes/no decision for each alternative)

4. If the finish_mode of automation_mode is “automatic,” and if the split_constraint of
transition_restriction is “XOR,” then select the alternative with highest preference {that is
at or above the recommendation_threshhold} and pass execution to that alternative. If
there are more than one alternative with such preference, select one randomly. If there is
no alternative that satisfies the recommendation_threshhold, then stop execution of this
thread.

5. If the finish_mode of automation_mode is “automatic,” and if the split_constraint of
transition_restriction is “AND,” then pass the execution control to all that satisfy the
recommendation_threshhold.

6. If the finish_mode of automation_mode is “manual,” then present the preference
orderings of the alternatives to the addressee of the Decision node. (SAGE EE assumes
automatic)

SAGE Guideline Model Specification 10/10/06

 Page 22 of 72

Figure 7 Structure of a Decision Node

4.3.1.3.3 Action

Action nodes model one or more information system activities employed in support of a
recommendation set. In terms of the workflow process model, action nodes are specializations
of generic WPDL activities. An Action node encapsulates a set of work items that should be
performed either by a computer system or by a healthcare provider. The central part of an Action
node is the set of Action_Specification specified in its action_spec property, or, in the case it
has a subguideline, the Subguideline instance in the subguideline property. In order to support a
variety of implementation options, action specifications may include support for messaging to
system devices, including Inbox reminders and workstation interaction, goal specification,
database retrieval and storage, and scheduling events. Complex actions may also be constructed
as templates of retrieval/storage activities to support action features such as interactive
questionnaires (see Section 4.6).

In addition to the properties inherited from the Activity_Graph_Node, an Action node has the
following properties:

automation mode: specifies whether this activity can be automatically started or stopped by
software. The manual alternative is for a user to interactively indicate whether this activity
can be started or stopped. The value is an instance of Automation_Mode class that has
start_mode and finish_mode slots.

triggering_events: a set of events that may trigger the Action node, if it is suspended.

addressee: the agent with whom the guideline is interacting in this Action.

termination_condition: for actions that may have duration during its execution (e.g. having
subguidelines that are stateful), this action of this Action node is deemed completed if this
criterion evaluates to true. The frequency of evaluating the termination_condition is left to
implementation.

SAGE Guideline Model Specification 10/10/06

 Page 23 of 72

action_spec: specification a set of tasks that should be performed in the Action step. See Section
4.6 for descriptions of the Action_Specification classes.

repeat_expression: an instance of Repeat_Specification that describes the temporal, logical,
and/or iterative conditions under which this action should be repeated. An instance of
Repeat_Specification has the following properties.

number_of_cycles: an integer

repeat_every: an instance of temporal duration (e.g. 2 months)

for_how_long: an instance of temporal duration (e.g. a week)

The semantics of the repeat expression is that the action should be repeated at interval of
repeat_every for number_of_cycles or for the duration of for_how_long.

• subguideline An instance of Subguideline that is executed as a part of this step.

The execution semantics of the Action node is as follows:

1. If the repeat_expression is null, then, once the node is activated (see Section 4.3.1.3), call
the subguideline, if there is one; otherwise perform actions specified in the action_spec
property. If there is both a subguideline and action_spec actions, the subguideline is
executed first. If there is a subguideline, the execution mode of the subguideline
(synchronous or asynchronous) determines whether we wait for the completion
of the subguideline before performing the tasks specified in the action_spec property.
(Implementation note: SAGE Execution Engine only executes subguidelines
synchronously.)

2. If the repeat_expression is not null, then once the node is activated, perform the actions
specified in subguideline/action_spec iteratively according to the Repeat_Specification.

3. If the termination_condition property is not empty, then, after performing the actions in
subguideline/action_spec, checks whether the termination_condition is true before
completing this activity and make transition to the subsequent activities. In case where
this activity is being repeated, check the termination_condition after each repetition.

SAGE Guideline Model Specification 10/10/06

 Page 24 of 72

Figure 8 Structure of an Action Node

4.3.1.3.4 Route

A Route node is a “dummy” activity that can be used as a purely branching or synchronization
node. The execution semantics of a Route node follows that described in Section 4.3.1.3.

4.3.1.4 Activity Graph Example

We use the Activity Graph formalism to model how SAGE DSS should respond to opportunities
in the care process for providing appropriate decision support. Figure 9 shows a Protégé view of
a top-level process specification in a SAGE immunization guideline. In Figure 9, the ovals
represent instances of the Context class, rectangles instances of the Action class, and hexagons
instances of Decision class. The context is triggered upon admission of a newborn to a neonatal
clinic. The process specified in the Activity_Graph is not the workflow process in the clinic, but
the computational process of the SAGE GDSS and how it coordinated with events in the clinical
workflow. Thus, after the initial admission event activated this context, the SAGE GDSS checks
whether hepatitis B vaccination is due and whether there are tests that need to be ordered both
for the baby and for the mother.

SAGE Guideline Model Specification 10/10/06

 Page 25 of 72

4.3.2 Decision Map

We argue that not all guideline recommendations are best represented as part of a process
specification. The information for determining when a particular immunization is due, for
example, involves declarative knowledge that is evaluated at a single point in time. The SAGE
guideline model organizes such atemporal decision-making knowledge as a Decision Map
consisting of a collection of decision points, each of which is defined by a context and a decision
involving multiple alternatives (which may be additional decisions or actions). The context,
decision, and action primitives in a Decision Map are similar to those in an Activity Graph, but,
not being workflow activities, they have different execution semantics. Each decision point is
separately triggered, if it is in a top-level recommendation set of a guideline, or requires separate
evaluation to ascertain its applicability. Thus, one use of the Decision Map is the encoding of a
collection of asynchronous alerts and reminders that are not organized as a connected process of
activities. Alternatively, a Decision Map can be used as the decomposition of a high-level action
that involves decisions made by a single provider in a specific clinical context at a single time.

Figure 9 The Protégé view of a top-level process specification in the SAGE
immunization guideline. It defines how a guideline DSS should react to the events in
the care process. The ovals represent contexts, boxes actions, and hexagons
decisions.

SAGE Guideline Model Specification 10/10/06

 Page 26 of 72

Implementation Note: In current SAGE Execution Engine, decision maps can only be
subguidelines.

Computationally a Decision Map allows several possible specializations. A Decision Map can be
a collection of event–condition–action rules where the Context nodes define triggering events,
the Decision node the condition, and the Action node the actions. If triggering is defined
externally, and if a Decision Map constraints that only one choice can be made in a decision, and
an action always results in a new context, then computationally the Decision Map becomes an
augmented transition net. Within this paradigm, each time the Decision Map is invoked, the
guideline execution system determines the current context, applies the knowledge in the decision
model, and commits to one alternative among the choices.

Implementation Note: In current SAGE GEE, decision maps cannot have triggers

4.3.2.1 Usage of Decision Map

When is a Decision Map the best choice for representing guideline recommendations?

1. When your guideline consists of a collection of decisions, each of which can be evaluated
independently of each other at one point in time. This is the case when your
recommendation set consists of decisions that are analogous to rules that have no

Figure 10 The Structure of a Decision Map

SAGE Guideline Model Specification 10/10/06

 Page 27 of 72

dependency on each other (although, in the case of the SAGE guideline model, the
decision model can be more sophisticated than deterministic antecedents of a rule).
Alternatively, decision maps are appropriate when recommendations depend on each
other, but with any invocation of the recommendation set, only unrelated decisions are
activated.

2. When the same decision knowledge in your guideline can be used in multiple contexts
(e.g. mass screening versus primary care encounter). You can encapsulate the re-usable
decision knowledge in a decision map, and model the workflow-dependent interactions as
separate activity graphs that call the decision map.

4.3.2.2 Decision Map Node

The Decision_Map_Node classes that make up a Decision_Map are functionally similar to their
Activity_Graph counterparts, except that there are no flow-of-control properties, such transition
restrictions and schedule constraints, which govern the activation of the activities in a process4.
The automation_mode constraint determines whether a Decision_Map node should wait for
manual intervention before starting or finishing. In addition, a split constraint in a DM_Decision
node specifies whether the choices at that decision point is XOR or AND.

Implementation Note: Since SAGE Execution Engine does not implement any of the workflow
flow-of-control mechanisms, the only differences between Decision Map and Activity Graph are
that, Decision Map may have multiple entry points (DM_Context instances) and that Decision
Maps, as subguideliens, cannot have triggering events.

4.3.2.3 Decision Map Example

Figure 11 shows part of a decision map for determining whether certain immunizations are due
for a patient. The pre-condition of each DM_Contex is evaluated to see whether the context
applies. If it is, then the alternatives associated each DM_Decision node are evaluated according
to the decision model that is specified in the DM_Decision node.

4 Implementation Note: Currently, the Decision_Map_Node instances don’t have triggering
events. Consequently they cannot be used to model event–condition–action rules, as asserted in
the description of the Decision Map formalism. Instead, in the current SAGE usage decision
maps are always subguidelines that are invoked by other recommendation sets.

SAGE Guideline Model Specification 10/10/06

 Page 28 of 72

Figure 11 An Example of Decision Map

4.4 Subguideline

In order to manage complexity in guideline recommendations, we need to support hierarchical
nesting of recommendations. Each Context, Decision, and Action node in an Activity Graph or
a Decision Map may be associated, through an instance of Subguideline, with another
recommendation set that we call sub-recommendation. The Subguideline instance specifies
whether the sub-recommendation should be executed synchronously or asynchronously. A
synchronous sub-recommendation means that the execution of the parent node is not completed
until execution of the sub-recommendation is completed. Mandatory subtasks, for example, can
be encoded as a synchronous sub-recommendation. Asynchronous sub-recommendation means
that the parent node does not wait for the sub-recommendation to complete its execution. Instead,
management of is forked off as an independent process.

A Subguideline instance also has associated references (i.e. instances of
Supplemental_Material).

As a matter of guideline encoding convention, a sub-recommendation in a Context node should
recommend actions that are relevant in that context, regardless of any subsequent decisions or
actions. A sub-recommendation in a Decision node should recommend actions that are helpful in
making the decision (e.g. obtaining relevant information about patient state). Finally, a sub-
recommendation in an Action node should refine the actions specified in the Action node.

SAGE Guideline Model Specification 10/10/06

 Page 29 of 72

Figure 12 The Structure of a Subguideline

4.5 Decision Model

A decision model is a model for formulating preferences among a set of alternatives. In a
Recommendation Set, a Decision node (in the case of Activity_Graph) or a DM_Decision node
(in the case of Decision_Map), a reference is made to an instance of Decision_Model class.
Alternative decision models can be substituted into a recommendation without changing the
structure of the recommendation.

Current SAGE decision model is one that derives from PROforma, GLIF3, EON, and
PRODIGY. It expresses preferences for an alternative in terms of a for-against argumentation
model (Figure 13).

SAGE Guideline Model Specification 10/10/06

 Page 30 of 72

Figure 13 The Structure of a Decision Model

The For_Against_Argumentation decision model consists of a collection of
Alternative_Choices instances, where each Alternative_Choice instance has the following
slots:

alternative: an alternative at this particular decision point. The alternative should be an instance
of the recommendation structure (Activity_Graph node or Decision_Map node).

strict_rule_in: A collection of criteria that express strong indications for the alternative.

strict_rule_out: A collection of criteria that expresses strong contraindications for the alternative.
If any of the strict_rule_out criteria is true, then this alternative should not be considered.

rule_in: A collection of criteria that expresses relative indications for the alternative

SAGE Guideline Model Specification 10/10/06

 Page 31 of 72

rule_out: A collection of criteria that expresses relative contraindications for the alternative

recommendation_threshhold: The number of strict_rule_in criteria that, if true, makes this
alternative a recommended choice

Figure 14 An Example of Alternative_Choice specification

SAGE Guideline Model Specification 10/10/06

 Page 32 of 72

4.6 Action Specification

Figure 15 Action Specification Classes

Instances of Action_Specifications are abstraction of CIS actions that operationalize the
guideline actions. They include:

1. A set of actions that assert to and retract from conclusions to the VMR

2. A set of actions that has effect on the CIS. This set includes communicate with some CIS
agent (e.g. send message, display information, inquire about data) and acts such as
placing an order, making a referral, setting goal, providing education, making an
appointment.

3. An act to generate events in the future

SAGE Guideline Model Specification 10/10/06

 Page 33 of 72

4. Aggregations of actions

4.6.1 Actions that operate on VMR classes

The first type of operations involves making or retracting conclusions.

Conclude writes inferred patient state and decision-historic data to the Observation,
Problem, or Goal VMR classes. If transient flag is true, then data are not written to
permanent record, but disappear after session ends.

Retract retracts system-asserted Observation, Goal, or Problem instances.

4.6.2 External_Action

There are five types of external actions: Notify, Inquire, Display, Recommend_VMROrder,
and Recommend_OrderSet. All external actions share three attributes: label, condition, and
priority. The condition should evaluate to TRUE for the action to be executed. Currently, the
priority slot is a string.

4.6.2.1 Notify

An instance of Notify passes a textual message_content on a subject with certain priority to an
addressee using a communication_mode.

Implementation note: SAGE Execution Engine only send messages to 3 addressee (session
owner, primary care provider, attending).

4.6.2.2 Inquire

An instance of Inquire requests a set of data elements from electronic medical record or from
another agent. Like a Notify instance, an inquiry has communication mode, addressee, and
priority attributes. Instead of message content, an Inquire action has a set of data_entries that
have the form of clinical expression models (Section 5.2.2). The optional attribute specifies
whether the SAGE Execution Engine should wait for the results of the inquiry before resuming
processing.

4.6.2.3 Display

The Display action has a display_data that allows the specification of display data in the forms
of Expressions (e.g. Variables, Functions, and VMR_Queries) or Clinical_DataSet_Entities
(e.g. flowsheet data elements) and Supplemental_Material (e.g., patient information leaflet).

Implementation Notes: Only Expressions are evaluated. If display items are instances of data
model or Supplemental_Material, then only label field is displayed

4.6.2.4 Recommend_VMROrder

Different types of interventions allow the clinician user to structure, tailor and plan complex
events following guideline recommendations. Recommend_VMROrder requires the
specification of the following slots:

SAGE Guideline Model Specification 10/10/06

 Page 34 of 72

order: an instance of VMROrder, Referral, or Appointment VMR classes

perform: either add, or delete. The add slot value indicates that the specified VMROrder
should be started, and the delete slot value indicates that the specified VMROrder should be
discontinued.

action_status: submit or authenticate. Submit value indicates that the order can be
submitted to the order entry system. Authenticate value indicates that the order requires
further approval. (Implementation Note: If action_status is not specified, submit is the default)

4.6.2.5 Recommend_OrderSet

Sometimes the implementer of a decision-support system may want to deliver guideline
recommendations in the form of order sets. The Recommend_OrderSet action specification has
an order_set slot that references the appropriate order set. See Section 4.8 for detailed
description of SAGE’s support for order sets.

Implementation Note: As of Oct 4, 2006, the condition associated with Recommend_OrderSet
is not evaluated.

4.6.3 Aggregations of Actions

We define two types of aggregation constructs.

4.6.3.1 Action_Set

An instance of Action_Set is collection of Action_Specification instances.

4.6.3.2 Compound_Action

Compound_Action is an if-then-else construct that allows selection of sets of
Action_Specifications based on the result of evaluating a Boolean condition. If the condition
evaluates to unknown, then neither the then nor the else clauses are executed. (Implementation
Note: SAGE Execution Engine treats unknown as false).

4.6.4 Deprecated Action Specifications

Prior to version 1.40, the SAGE guideline model uses a set of Action_Specifications that had
evolved in an ad hoc way. Many of the action specifications have attributes that parallel those of
VMR classes. They are listed below, but their usage is discouraged.

Inquiry

Conclusion

Schedule_Appointment

Make_Referral

Provide_Education

Order

Prescribable_Item

SAGE Guideline Model Specification 10/10/06

 Page 35 of 72

Message_Action

Set_Goal

Retract_Conclusion

SAGE Guideline Model Specification 10/10/06

 Page 36 of 72

4.7 Expression Language

One characteristic of a computable guideline model that set it apart from an unstructured or
semi-structured guideline document is that it has a formal representation of eligibility criteria and
decision criteria that, given a set of patient information, can be evaluated to generate patient-
specific conclusions. The computable representation has three components: (1) a model of
patient information that defines the structure of data, (2) codified terminologies that allow
matching of concepts between an encoded guideline and patient data, and (3) an expression
language that defines the syntax and semantics of the decision criteria. For the SAGE guideline
model, we adopt the GELLO expression language being developed by the Clinical Decision
Support Technical Committee (CDSTC) of Health Level 7 as the foundation of SAGE’s
expression models.

GELLO is a generic expression language that can be used with any object-oriented data model.
However, GELLO is a complex string-based language that is not easy to write for someone who
is not trained technically. To make it possible for guideline encoders to author computable
expressions, we introduce a number of classes that organize expressions into typed data values,
variables, queries, functions, and criteria (as shown in Figure 16). Except for data types, each
expression class corresponds to a template of stereotypical GELLO expressions. These classes
can be used to generate fill-in-the-blanks forms that are much easier to instantiate. These forms
also allow us to develop specialized tools to facilitate the use of standard terminologies while
writing expressions. In this section, we first give a brief introduction to GELLO and show how it
can be used to write a complex expression. Then we discuss the expression classes that we
introduce to facilitate the use of GELLO.

SAGE Guideline Model Specification 10/10/06

 Page 37 of 72

Figure 16 Classes of SAGE Expressions

Note that NULL is a possible value of an expression, including Boolean expressions. The
semantics of Boolean operators are defined by the following truth tables (where other means null
or a value of non-Boolean data type (e.g. 3.5, “aString”) :

AND operator true false other

true true false null

false false false false

other null false null

OR operator true false other

true true true true

false true false null

other true null null

SAGE Guideline Model Specification 10/10/06

 Page 38 of 72

NOT operator true false other

 false true null

Implementation note: SAGE Execution Engine implemented binary Boolean value. When
anything evaluates to unknown, that defaults to FALSE

4.7.1 GELLO

The syntax of the GELLO language depends on the use of an object-oriented data model. We
refer to this as a “virtual medical record” (or vMR) (Johnson et al., 2001b). GELLO is based on
the Object Constraint Language (OCL)(Object Management Group, 2003). OCL is well-
developed as a constraint language and has a number of features that make it desirable for use as
an expression language. However, because OCL is designed for writing constraints in an UML
model, a number of adaptations have to be made for it to be suitable as a language for writing
clinical decision criteria. First, a number of OCL features, such as pre- and postconditions,
invariants, self and implicit references to objects, are not applicable in the guideline modeling
setting. The context declaration mechanism has to be modified so that, for guideline designed to
assist in the management of individual patients, the context of the expressions have to be defined
to be the medical record of a single patient5. Similarly, we have to introduce ways of referencing
instances of model classes that are not necessary in the UML modeling context. The full
specification of GELLO is maintained by HL7.

In the following, we give some examples to show how GELLO expressions can be written to
specify complex relationships.

The patient has a prescription for a drug such that the drug is compellingly indicated (i.e.,
there exists a patient problem such that the problem is a compelling indication for the drug)
We assume that we have a declarative representation of drug information such that properties of
drug usage (e.g. compellingIndication) are attributes of the representation of drugs.

Three places where GELLO-lile expression occur: Function and Conditional_Expression

MedicationOrder->exists (Problem ->exist (problem: drug.AllInstances () -> exist (not
(drug.compellingIndication -> intersection (problem) -> isEmpty))

Average systolic blood pressure from today

let “now” (a PointInTime) be the context-dependent name for the current time, and timeOfDay()
be a method that returns the hour:minute:second portion of a PointInTime.

let SystolicBPCode CodedValue = CodedValue.valueOf("LOINC", "xxx")
let mmHGCode CodedValue = CodedValue.valueOf("LOINC", "yyy")
let midNightToday PointInTime = now.minus(PointInTime.timeOfDayNow()
let todaySystolicBP Set = Observation->select(code.implies(SystolicBPCode) and
effectiveTime.within(IVL<TS>.valueOf(midNightToday, now)

5 As of 2004/02/11, specification of context has not been established in GELLO.

SAGE Guideline Model Specification 10/10/06

 Page 39 of 72

let SysBPSum PhysicalQuantity =
 if todaySystolicBP->notEmpty() then
 (todaySystolicBP->iterate
 sysbp : Observation
 sysbpsum : PhysticalQuantity = PhysicalQuantity.new(0, mmHGCode) |
 sysbpsum.plus(sysbp.value)
)
let SysBPAverage PhysicalQuantity =
 if todaySystolicBP.notEmpty() then
 SysBPSum.divide(todaySystolicBP.size())
 else null
 Endif

4.7.2 Basic Data types

GELLO’s native data types consist of string, Boolean, integer, and float. For modeling
guidelines, we adopted the data types defined in HL7’s abstract data type specification. The HL7
defined the UML Implementation Technology Specification for the data types (Grieve et al.,
2003) defines the canonical representation of data types used in the SAGE guideline model.

We extend the HL7 version 3 data types with additional types as follows:

4.7.2.1 ParametrizedString

A ParametrizedString derives from the String data type class. It is designed to provide a
template for dynamically constructed string. In addition to the label slot, it has a variables and a
value slot. The slot value for the variables slot is a list of Variable instances. The value slot holds
a string that may have embedded references to variables. At run time, the variables are evaluated
and the string representation of the variable values is substituted into variables referenced in the
value string.

The syntax of referencing variables in a string is “*’|(?variable)|’*, where ‘*’ is the wild-card
character and ?variable is the name of a variable.

4.7.2.2 ConditionalString

A ConditionalString derives from the String data type class. It is designed to provide a way to
specify alternative text strings based on a patient-specific decision criterion. It has three
additional slots: condition (instance of Criterion), condition_true_strintg (instance of
CharacterString data type class), and condition_false_string (instance of CharacterString data
type class). The slots condition and condition_true_string are required to have values.

ConditionalString is equivalent to a GELLO if-expression
if condition then
condition_true_strintg else
condition_false_strintg endif

SAGE Guideline Model Specification 10/10/06

 Page 40 of 72

4.7.3 Variable

An instance of the Variable class with

 datatype: Type

 referenced_as: variableName

 derivation_expression: function, query, or data value

is equivalent to a GELLO expression of the form:

let variableName Type = derivation_expression

The Variable class has additionally optional slots “label” to give a user-friendly label to the
variable name.

Figure 17 shows an example of the date of birth being specified as a variable. The derivation
expression is an instance of VMR query.

Figure 17 Example of a SAGE Variable

4.7.4 Function

An instance of the Function class is defined by a string-valued expression and a reference to the
expression language used. An optional “parameters” field enumerates, for explanation purpose,
the global variables used in the expression.

In terms of GELLO, a SAGE function is equivalent to the functional expression itself.

Implementation Note: The SAGE Execution Engine supports the following operators: "-",
"minus", "+", "plus", "(", ")", "*", "multiply", "/", "divide", "maximum". Functions support
modifiers: "new", "average", "high", "low". Types are: "Quantity", "PhysicalQuantity",
"CodedValue", "SNOMED CT", "PointInTime", "month", "today", "now".

An optional exception_alternative field allows the user to specify a default value to use if the
functional expression cannot be evaluated because of data problem.

Figure 18 shows the function that computes takes the maximum of NOW and 3 months from the
time of the last HDL test. If the expression cannot be evaluated (e.g. there is no time for the last
HDL test), then the value of exception_alternative is returned instead. Encoder should ensure
that the exception_alternative can be evaluated.

SAGE Guideline Model Specification 10/10/06

 Page 41 of 72

Figure 18 Example of a SAGE function (maximum of now or 12 months after last HDL lab)

4.7.5 VMR_Query

The VMR_Query class allows the specification of a subset of GELLO expressions that can be
formulated as a constraint on the values of a single VMR class. The constraint
(VMR_specification property of VMR_Query) is expressed as an instance of a VMR class that
has selected attributes specified. Figure 19, for example, is equivalent to a GELLO expression of
the form:

 Observation.select (code.implies (SNOMEDCodeForDateOfBirth))

The result of evaluating the selection is a set of VMR instances. The set is the query result unless
the aggregation_operator and/or selection_attribute properties of VMR_Query are used to
refine the query. The selection_attribute specifies the property of the VMR class whose value
should be returned. In Figure 19, for example, evaluating the vmr_specification query constraint
results in a set of Observation instances whose code is the SNOMED code for date of birth. The
selection_attribute indicates that the final query result should be the value of the value property
of the instance whose effectiveTime is most recent.

Implementation Note: Oct 2, 2006 VMR queries default to most recent when no
selection_attribute is selected (i.e., VMR_Query never returns a set; An aggregation operator is
always applied to result of vmv specification query)

SAGE Guideline Model Specification 10/10/06

 Page 42 of 72

Figure 19 Example of a VMR query for the Date of Birth

A set of convenience aggregation operators have been defined. Their definitions in terms of
GELLO are as follows (VMRInstanceCollection is the collection of VMR instances returned by
evaluating the vmr_specification constraint):

most_recent
• When selection_attribute property is empty

 VMRInstanceCollection.sortBy(effectiveTime).last()
• When selection_attribute property has the value of attribute

 VMRInstanceCollection.sortBy(effectiveTime).last().attribute

number_of

 VMRInstanceCollection.size()
first

• When selection_attribute property is empty

VMRInstanceCollection.sortBy(effectiveTime).first()
• When selection_attribute property has the value of attribute

 VMRInstanceCollection.sortBy(effectiveTime).first().attribute

any
• When selection_attribute property is empty

Random selection of an instance of VMRInstanceCollection

SAGE Guideline Model Specification 10/10/06

 Page 43 of 72

• When selection_attribute property has the value of attribute

The value of the attribute property of a randomly selected instance of
VMRInstanceColllection

average

 See Section 4.7.1 for a description of how an average may be computed using GELLO
expressions. To compute averages, the selection_attribute property must have values for
which addition and division by an integer are defined.

Implementation Note: VMR instances as query specification is documented in SAGE Execution
Engine Specification.

4.7.6 VKB_Query

In the SAGE system, external knowledge sources are modeled as virtual knowledge bases (see
Section 4.9). Just like the virtual medical record (VMR), a virtual knowledge base (VKB)
defines the information structure of the knowledge source so that queries can be written to
retrieve information from external knowledge sources. A virtual knowledge-base query
(VKB_Query) has a very simple structure. It has three slots:

label: a human-readable string describing the query

vkb_specification: an instance of a VKB class or Evidence_Statement_Query_Template

selection_attribute: selection_attribute slot specifies the property of the VKB class whose value
should be returned.

Just as in a VMR query, the vkb_specification specifies that query evaluation should first return
all instances of the VKB class whose attribute values match those in the vkb_specification
instance. For example, the Evidence_Statement_Query_Template can be seen as a template
for query of the form:

Evidence_StatementCollection->select(
{conditions}.includes(from) AND
relationship_qualifier.implies(

 {relationship_qualifier}) AND
relationship_type.implies({relationship_type}) AND
to.implies({ti})AND
statement_subject.implies({statement_subject}) AND
strength_of_evidence.implies({strength_of_evidence})

The selection_attribute determines whether the query should return instances of the VKB class
or (when selection_attribute is specified) the attribute values of the VKB instance.

In Figure 34, for example, evaluating the vkb_specification query constraint results in a set of
CodedValue instances that represent the ACE inhibitor drugs that a patient is taking. The
selection_attribute indicates that the final query result should be the value of the
NDF_Maxiumum_Daily_Dose_Strength property of the instances. (We assume that a set of one
element is casted into the element itself.)

SAGE Guideline Model Specification 10/10/06

 Page 44 of 72

4.7.7 Relation_Query

An instance of Relation_Query is designed to query for instances of relations (e.g.,
Evidence_Statements that match patient conditions. Figure 20 shows an example of a
Relation_Query that searches for all evidence statements on absolute contraindications of ACE
Inhibitor such that the condition evaluates to true and then returns the from slot values (i.e., the
medical conditions that constitute absolute contraindications). The semantics of a
Relation_Query cannot be expressed in GELLO because GELLO does not have an evaluation
operator that evaluates a Boolean expression as part of the language. The semantics of relation
queries can be expressed informally as follows:
SELECT valueof selection_attribute FROM instances of
[relationship_class] where

relationship_type subsumes[relationship_type] AND
relationship_qualifier subsumes [relationship_qualifier]
AND
statement_subject subsumes [statement_subject] AND
to subsumes [to] AND
[from] evaluates to TRUE, FALSE, or UNKNOWN

Figure 20 An example of Relation_Query that searches for all evidence statements on
absolute contraindications of ACE Inhibitor such that the condition evaluates to true.

4.7.8 Conditional_Expression

A Conditional Expression an expression designed to provide a way to specify alternative data
values based on a patient-specific decision criterion. It has three additional slots: condition
(instance of Criterion), if_true_condition (instance of Expression), and if_false_condition
(instance of Expression class). If the condition slot evaluates to true, then the evaluated

SAGE Guideline Model Specification 10/10/06

 Page 45 of 72

if_true_expression is returned. If the condition evaluates to false, then the if_false_expression is
returned. The slots condition and if_true_string are required to have values.

4.7.9 Criteria Templates

Criteria templates are structured templates that allow a user of the SAGE guideline model to
encode decision criteria in a syntax-independent form-based method. It also allows workbenches
for encoding guidelines to develop specialized graphical user-interface and tools to facilitate the
guideline authoring process.

There are five major types of criteria templates: Boolean combination, comparison, existence
(presence or absence), goal-satisfaction, and GELLO criteria that can be used when other types
are not sufficient (Figure 21). To determine which of the numerous criterion classes to use,
follow the following algorithm:

If the expression you want to write evaluates to true, false, or unknown, then

Figure 21 Subclasses of Criterion

SAGE Guideline Model Specification 10/10/06

 Page 46 of 72

1 If the expression is a BOOLEAN combination (AND, OR, or NOT) of simpler criteria,
then use N_ary_Criterion

2 If you want to check to see whether the goal (i.e. target range) of a measurable clinical
data is satisfied, use Goal_Criterion

3 If you want to make some kind of comparison (e.g. comparing values or time, or whether
value is within a range), then you want to use one of the comparison criteria:

3.1 If you query for one of more instances of a VMR class according to the
code and valid time, aggregate the result somehow (e.g. take average,
count number of instances, or select the first or last instance) and
compares the result (or the value of the “value” slot in the case of
Observation VMR class) to some value, then use Comparison_Criterion.

3.2 If the expression is not comparing the value of an instance (or the average
value), but comparing the timing of a VMR instance that is selected using
code and valid time as constraint, then use the
Temporal_Comparison_Criterion.

3.3 If the comparison you want to make cannot be formulated comparing the
value or time of a VMR instance to some value or time, then you should
consider the Variable_Comparison_Criterion, which simply compares
the value of a variable to some other value.

4 If the expression checks the presence or absence of some VMR instance, then you should
one of the “presence” criteria.

4.1 If the instances whose presence|absence you are checking are instances of
the Adverse_Reaction class, then use
Adverse_Reaction_Presence_Criterion

4.2 If you only want to check the presence|absence of a VMR instance with a
specific code and whose valid time (effectiveTime slot) intersect time
window (from some past time point to now), then use Presence_Criterion

4.3 If, additionally, the instance whose presence|absence you are checking
have certain statusCode or priorityCode then use
Intervention_Presence_Criterion

4.4 If the instances whose presence|absence you are checking depend the
properties rateQuantity, doseQuantity, routeCode, and duration (all
properties of SubstanceAdministration or MedicationOrder) then use
Medication_Presence_Criterion [Implementation note: SAGE GEE
implements Medication_Presence_Criterion as Presence_Criterion.)

4.5 If the instances whose presence|absence you are checking are instances of
Observation and the criterion depends on the properties value and
methodCode then use Observation_Presence_Criterion
[Implementation note: SAGE GEE does not implement matching of
methodCode in Observation_Presence_Criterion.)

SAGE Guideline Model Specification 10/10/06

 Page 47 of 72

5 If you want to check to see if any of the evidence statements applies for the case, then use
the Relation_Presence_Criterion. This criterion type allows you to specify the subset of
evidence statements you want to check (e.g., all evidence statements regarding
compelling indications (relation_type) for use of ACE inhibitors (to) in the treatment of
hypertension (subject)).

6 If the criterion you want to write cannot be written using any of the above criterion
template, then you need to use GELLO criterion.

4.7.9.1 N_ary_Criterion

An N_ary_Criterion is a Boolean combination (AND, OR, NOT) of other criteria. It is
equivalent to the use of “and”, “or”, or “not” operators in GELLO.

Example:

Figure 22 An example of N_ary_Criterion

4.7.9.2 Comparison_Criterion

The comparison criterion is used to express criteria of the forms:

1. When VMR_class is Observation: Is the
(most_recent|average_of|first|second|third|any|all|number_of) Observation value(s) within
valid_window (i.e. effectiveTime intersects with valid_window), whose coded-concept is
specified in the code_concept slot equals, >, <, >=, <=, not equals, in, not in, or implies
the value of value slot. The assume property indicates what assumptions should be made
when there is no Observation available to make the comparison. The possible
assumptions are no_assumption, assume_true, and assume_false.

 Null valid window defaults to 'ever in the past.'

 Example: “Most recent creatinine clearance < 70 ml/min”

SAGE Guideline Model Specification 10/10/06

 Page 48 of 72

Figure 23 Comparison Criterion “value of most recent Serum Creatinine > 2 mg/dL

2. If vmr_class is not Observation, then the aggregation operator should be
number_of. We use this to check if the number of instances of such vmr class that
satisfy the specified constraints is equal to, greater than, less than, or not equal to the
value of value slot.

Example: The number of DTP vaccinations in the past = 3 (Figure 24).

Figure 24 Comparison Criterion “Number of DTP vaccination substance administration in
the past = 3”

SAGE Guideline Model Specification 10/10/06

 Page 49 of 72

4.7.9.3 Presence_Criterion

A presence criterion checks for presence or absence of coded concept in instances of a VMR
class within the valid window. There are five flavors of Presence_Criterion, as described in
Section 4.7.9. Their usages are fairly similar, we will describe
Adverse_Reaction_Presence_Criterion. Details of the other types Presence Criterion can be
found in the javadoc-style specification documents.

4.7.9.3.1 Adverse_Reaction_Presence_Criterion

An Adverse_Reaction_Presence_Criterion checks for the presence or absence of an
AdverseReaction instance that satisfies the code, substance, reaction, severity, and
effectiveTime (valid_window) constraints specified in the criterion. In terms of GELLO, it can be
formulated as

VMR.AdverseReaction->exists(code.implies({code} and
effectiveTime.intersect({valid_window})) and substance.implies({substance}) and
reaction.implies({reaction}) and severity.implies({severity}))

Figure 25 shows an instance of Adverse_Reaction_Presence_Criterion class that expresses “No
allergic reaction to ACE Inhibitor drug now or in the past”

Figure 25 An example of Adverse_Reaction_Presence_Criterion

4.7.9.4 Temporal_Comparison_Criterion:

A temporal comparison criterion compares the temporal relationship (before, after, concurrent,
...) between the time of an VMR instance (with specific coded_concept and aggregationoperator)
and some time_for_comparison. In terms of GELLO, if we use {slotname} to denote the value of
the slot, the criterion can be written as

{VMR_Class}.exists(code.implies({code} and
effectiveTime.intersect({valid_window})).{aggregation_operator}().{time_attribute}.

SAGE Guideline Model Specification 10/10/06

 Page 50 of 72

{operator}
({time_for_comparison})

Thus, the example shown in Figure 26 can be written as
SubstanceAdministration.select(code.implies(SNOMED code for
Hib vaccination)).first().effectiveTime.before(15 months of
age)

The possible values of aggregation_operator are
 most_recent, first, second, third, fourth

The possible values of operator are

 before, after, concurrent, before_or_on, and after_or_on,
intersect

Since the time_attribute and time_for_comparison can be either time interval or time point, a
time point is made into an interval with the same high and low points. The concurrent operator
should be interpreted as equality of time intervals.

Figure 26 Example of Temporal_Comparison_Criterion: First Hib dose was given before
15 months of age

4.7.9.5 Variable_Comparison_Criterion

A Variable_Comparison_Criterion compares the value of a variable to some other value. You
would define the variable first as a query or a function (See section 4.7.3 to 4.7.6), then compare
the value of the variable to some other value. The possible comparison operators are >, >=,
<, <=, in, not_in, equals, and not_equals. The semantics of the operators
depend on the data types of the variable and expression being compared. The in and not_in
operators, for example, assumes that the value slot is a multi-valued data type such. An

SAGE Guideline Model Specification 10/10/06

 Page 51 of 72

implementation of this type of criterion assumes that there is a mapping from the comparison
operators to the underlying methods of the data types.

Implementation Note: in and not_in operators are not implemented in SAGE Execution
Engine.

Figure 27 An example of Variable_Comparison_Criterion

4.7.9.6 Goal_Criterion:

The Goal_Criterion evaluates the status of a goal. The current SAGE Goal_Criterion template
only allows a user to specify a simple criterion that checks that the most recent value of the
Observation with the matching code is within the target range of the goal that has the same
code. Thus, for example, the Goal_Criterion in Figure 28 should return true only if the most
recent value of HDL observation is within the target range of the most recent HDL goal.

More complex goal criteria (for example, that the average of the last two observations should be,
say, within 10% of the target range) can be encoded using explicit comparison criteria. For
example, “average of the last two observations” and “10% of the target” range can be
constructed using VMR queries and functions written in GELLO.

Figure 28 Example of a Goal_Criterion

SAGE Guideline Model Specification 10/10/06

 Page 52 of 72

4.7.9.7 Relation_Presence_Criterion

We define Relation_Presence_Criterion to specify whether there exist instances of evidence
statements that match specified attributes and where the condition is present. For example,
Figure 29 shows a query: is any instance of Evidence_Statement for which the condition that is
a compelling indication of ACE Inhibitor present?

Figure 29 Example of a Relation_Presence_Criterion

The criterion can be used as a strict rule-in criterion for adding ACE inhibitor to a patient’s
medication list. Thus, the strict rule-in slot of a decision alternative does not have to enumerate
specific conditions for adding ACE (Figure 30).

Implementation Note: The SAGE Execution Engine does not use relationship_qualifier,
statement_subject in matching for relation instances.

SAGE Guideline Model Specification 10/10/06

 Page 53 of 72

Figure 30 Example of the usage of relational query in a decision model

4.7.9.8 GELLO Criterion:

SAGECriterion is a "fall-back" criterion type for writing criteria that cannot be expressed using
other criterion template.

The GELLOCriterion class allows the specification of a textual expression. The let property
specifies a set of Variable instances that are available for explanation purpose.

A decision criterion used in a guideline line may be arbitrarily complex. It may mix medical
knowledge with patient data. For example, a statement like “There exists (for a patient) an anti-
hypertensive prescription (?prescripton) such that there exists (for the patient) a problem
(?problem) such that ?problem is a compelling indication for ?drug” uses a relationship
(compelling indication) between a patient problem and a class of drugs. If such relationship is
defined through instances of a ConceptRelation class that defines relation_type, from, and to as
properties (where from and to have as their values coded concepts), then the statement can be
written as follows:

MedicationOrder->exists(?prescription: Problem->exists(?problem: ConceptRelation-
>exists(?relation: ?problem.code.implies(?relation.from) and
?prescription.code.implies(?relation.to) and
codeForCompellingIndication.implies(?relation.relation_type)

SAGE Guideline Model Specification 10/10/06

 Page 54 of 72

4.8 Order Set

An executable SAGE guideline interacts with order sets based on the following assumptions:

• There is an external reference encoding of order sets

• SAGE can reference specific items in the order set by their unique ids and offer decision-
support services by modifying the content of the order set

• SAGE may process logic based on patient data and context to:

• Select among pre-loaded order sets.

• Determine if an item within an order set is to be pre-selected.

• Compute specific annotations for those orders.

Because of the need to compute annotations and to pre-select appropriately, the representation of
order sets in the SAGE guideline model correspond to, but is not identical to the representation
of a standard order set. Specifically, a SAGE assumes that order sets will have the following
structures:

• An Order_Item consisting of the following attributes:

• identifier that uniquely identifies the corresponding order item in the reference
encoding of the order set

• orderitem that can be an instance of a VMROrder, Observation, or Goal

• condition a Boolean criterion that, if evaluate to true, pre-select this order item

• fullTextOrder that is a textual statement of the order item

• orderAlertingOrExplanationText that hold zero or more strings that may be
instances of ParametrizedString (see Section 4.7.2.1) or ConditionalString (see
Section 4.7.2.2)

• A Boolean_Order_Collection which has the attributes condition, identifier, and
orderAlertingOrExplanationText (similar to those of Order_Item). In addition, it has

• group_body that is a required collection of Order_Item or
Boolean_Order_Collection instances.

• boolean_connective that may have one of XOR, OR, and AND. XOR means only one of
the items in group_body should be performed; AND means all of the items in
group_body should be performed, and OR means at least one of the items in
group_body should be performed.

• title a textual string describing the collection of orders
• An Order_Set that is just a Boolean_Order_Collection with an additional metadata slot.

• An OrderSet_Metadatat class that inherits the attributes date, developer, identifier,
publisher, and title from the Resource_Metadata class. The attributes specific to
OrderSet_Metadata are

• ageRestriction: an instance of a Criterion.

SAGE Guideline Model Specification 10/10/06

 Page 55 of 72

• genderRestriction: an instance of a Criterion.

• problemCode: zero or more instances of CodedValue

• sessionCode: a class with allowed parent Clinical_Setting

• references: zero or more instances of Supplemental_Material

The class hierarchy for the order set constructs is depicted in Figure 31.

Figure 31 The class hierarchy for order set entities

Figure 32 shows an example of a SAGE order set.

SAGE implements external order sets as XML documents that conform to an order set schema.
When SAGE execution engine recommends an order set, it uses patient information to compute
the pre-selection flag and annotations that are specified in the guideline order set model. The
output is a patient-specific XML file that is merged, through XSLT, with the external order set to
produce an annotated order set for a patient (Figure 33).

SAGE Guideline Model Specification 10/10/06

 Page 56 of 72

Figure 32 An example of SAGE order set (preference_condition is the display label for the
condition slot).

Error! Objects cannot be created from editing field codes.

Figure 33 The Medication section of the CAP order set that shows checked pre-selection
flags aand patient-specific annotations.

4.9 Use of External Knowledge Sources

The application of a guideline to the care of a patient requires that we augment the guidance
specified in the guideline with general medical knowledge. It is neither practical nor desirable to
assume that all applicable medical knowledge is part of a monolithic guideline knowledge base.

 Annotations to be
computed

SAGE Guideline Model Specification 10/10/06

 Page 57 of 72

Thus, effective guideline encoding requires that we have well-defined method for accessing
medical knowledge outside the guideline model.

The SAGE Guideline Model does not mandate a particular division between medical knowledge
that should be encoded as part of a guideline knowledge base and that should be externally
supplied. The division is likely to depend on the guideline and on the application environment.
Thus, for example, the Seventh Report of the Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure discusses indications and
contraindications of various anti-hypertensive agents.6 The information contained in a generic
drug knowledge base may overlap with those described in the guideline.

For referencing external knowledge sources, we take the same approach as what we do with
patient data. That is, we define a virtual interface that can be mapped to the real knowledge
source. The virtual interface consists of a collection of entities and relationships based on which
decision criteria can be written.

A drug knowledge base is the most important external knowledge source that a SAGE guideline
can access. For the SAGE project, we adopt the drug model defined in the National Drug File -
Reference Terminology (NDF-RT)(Carter et al., 2002). In particular, we use the specifications of
ActiveIngredientPreparation, DrugComponent, and ClinicalDrug, where
ActiveIngredientPreparation (e.g. LISINOPRIOL PREPARATION) has roles such as
“may_treat,” and “CI_with” (contra-indication with), where DrugComponent (e.g.
LISINOPRIL 40 MG) are defined by properties such as NDF_Strength (40) and NDF_Units
(MG), and where ClinicalDrug (e.g. LISINOPRIL 40 MG TAB) adds the DoseForm (e.g.
TAB) property. Furthermore, ClinicalDrug (e.g. HYDROCHLOROTHIAZIDE
12.5MG/LISINOPRIL 10MG TAB”) may be made up multiple DrugComponents.

We assume that entries in the external knowledge source are indexed by a terminology code.
Thus, ActiveIngredientPreparation, DrugComponent, and ClinicalDrug are modeled as
subclasses of Coded_Value.

To illustrate how we use this drug model to access the NDF-RT as an external knowledge source
in guideline encoding, we show how the drug model and the SAGE the virtual medical record
(VMR) are combined to find the NDF_Maxiumum_Daily_Dose_Strength of the ACE inhibitor
that is in a patient’s medication list. We will work backward. First, in Figure Figure 34, we show
the derivation of the NDF_Maxiumum_Daily_Dose_Strength of the ACE inhibitor as a
VKB_Query (see Section 4.7.6 for a description of VKB_Query) :

6 For example, “ACEIs and ARBs are contraindicated for women who are or intend to become
pregnant because of the risk of fetal developmental abnormalities”

SAGE Guideline Model Specification 10/10/06

 Page 58 of 72

Figure 34 A VKB query to find the maximum daily dose for the current ACE inhibitor that
a patient is taking

“current ACE med order drug” (Figure 35), is a variable whose value is derived from a VMR
query:

Figure 35 The "current ACE inhibitor medication variable

The “current ACE med” derivation expression is a VMR query that uses attribute selection
(Figure 36:

Figure 36 A VMR query to get the code of the current ACE inhibitor medication order

Here we make the assumption that the code of an medication order is a ClinicalDrug that has the
NDF_Maxiumum_Daily_Dose_Strength attribute that we are querying in Figure 34.

SAGE Guideline Model Specification 10/10/06

 Page 59 of 72

As a second example, we show how to compute the daily dose of a drug component of a
MedicationOrder using GELLO:

Let ?med be an instance of the VMR class, then

 QuantityPerDayInOriginalUnit(?med) =
 ?med.repeatNumber * ?med.doseQuantity*(?med.repeatNumber.unit/”per day”)

 (e.g. 2 tablets ‘every 6 hours” = (per 6 hours) * 2 tablets * (per day / per 6 hours) = 2 * 4
tablets per day = 8 tablets per day)

Let assume that the value of the code slot of MedicationOrder has been mapped to
ClinicalDrug codes, and a ClinicalDrug ?D has a predicate hasComponent(?x) which is true if
?x is a drug component of ?D. Then the daily dose of drug component ?x (e.g. LISINOPRIL
10MG) for a patient who has been prescribed a MedicationOrder ?med is:

 If ?med.code.hasComponent(?x) then

 DosePerDay(?med, ?x) = QuantityPerDayInOriginalUnit(?med) *
?x.NDF_Strength/?med.doseForm

 (e.g. 8 tablets/day * 10 mg/tablet = 80 mg/day)

From the point of view of a guideline encoder, the use of terms like
?drugComponent.NDF_Strength is similar to a reference to a property of a guideline instance.
However, the SAGE execution engine has the responsibility to use the API provided by the
external knowledge source (in this case the Apelon TDS server) to fetch the necessary
information in evaluating the expression.

4.10 Interchange Format

The SAGE guideline model is represented in Protégé. Protégé supports multiple file formats,
including RDF Schema, XML Schema, and CLIPS format. The RDF Schema format represents
classes as part of a generated RDF Schema. The XML Schema format uses a fixed schema for
Protégé classes, slots, and instances. For details, see http://protege.cim3.net/cgi-
bin/wiki.pl?ProtegePluginsLibraryByType#nid3T2

4.10.1 XML Schema

We create an XML-based syntax to serve as the exchange syntax by defining a SAGE Guideline
XML schema that constrains the legal XML representation of the guideline instance. Note that
the XML Schema is NOT the normative definition of guideline model. XML Schema is not
sufficiently expressive (e.g. no multiple inheritances for derived types). It just defines the syntax
of the exchange format.

4.10.1.1 Design Decisions

The design decisions for the XML schema are as follows:

• The Guideline, Recommendation_Set, Variable, and CEMMetaclass classes are
classes whose instances are elements under the top-level element.

SAGE Guideline Model Specification 10/10/06

 Page 60 of 72

• For each class that is not a terminology code, constraints on data model, or a system
class, create a complex type that has a required ID type attribute (to hold the value of
instance id) and whose subelements are properties of the class.

• For a class that has multiple superclasses, use annotation to select one parent for the
purpose of XML schema complex type. The classes for which a single superclass has to
be chosen are:

o (setParentForSchema "Boolean" "Criterion")

o (setParentForSchema "ConceptDescriptor" "DataValue")

o (setParentForSchema "Guideline_Metadata" "Resource_Metadata")

o (setParentForSchema "OrderSet_Metadata" "Resource_Metadata")

o (setParentForSchema "Deprecated_Action_Specification"
"Action_Specification")

o (setParentForSchema "RelativeTimeInterval" "TimeInterval")

o (setParentForSchema "Transition" "Recommendation_Specification")

o (setParentForSchema "Evidence_Statement" "Guideline_Model_Entity")

o (setParentForSchema "HL7_Data_Type" ":STANDARD-CLASS")

o (setParentForSchema "ActMetaclass" ":STANDARD-CLASS")

• There are three special complex types: _THING (from which all types are derived),
_STANDARD-CLASS (from which the metaclasses HL7_Data_Type, ActMetaclass,
and CEMMetaclass are derived), and _STANDARD-SLOT which is the type of
whose values are slots themselves.

• Slot values whose value type is “Class” will be constrained to be instances of _Thing.

• Cardinality constraints on slots translates into XML cardinality constraints (Slots whose
cardinality is multiple become subelements that are “unbounded” (i.e. there may be
repeated subelements that have the same tag))

• Values of the following slots are made to be references only (i.e. no expansion of
instance values as subelements).

o subrecommendations

o recommendation_set

o alternative

o :FROM

o :TO

• Slot values whose value type is “Symbol” will be made into strings with a list of
allowed strings. (Not done yet)

• For each property that has a complex value type (i.e. an association in UML), create a
sequence of either one element (for cardinality single slot) or a set of elements (for

SAGE Guideline Model Specification 10/10/06

 Page 61 of 72

cardinality multiple slot), where the element tag is the allowed class of the property
value. In the case there are multiple allowed classes, then use the most specific class
that is a generalization of all possible allowed classes. In case of an allowed class whose
child has multiple inheritances, find the most specific class that is a generalization of all
possible allowed classes.

• Special characters such as “:” and “ “ are converted to “_”

• Changes to Guideline Model:

o Evidence_Statement made a subclass of Guideline_Model_Entity

o Made "Deprecated_Action_Specification" a subclass of "Action_Specification"
(so xml schema can generate appropriate base class for action_spec,then, and else
slots).

o Removed "Expressiion" as an allowed class for "display_data" slot of "Display"

o Added Order_Set_Entity as a superclass of OrderSet_Metadata

o Set minimum cardinality of steps slot in Activity_Graph class = 1

Known limitations of the current schema-generation software:

o All complex type derivations are by “extensions.” Some should be by “restriction.”

4.10.1.2 Implementation of XML Schema Generation

The generation of XML schema is based on a set of annotations to Guideline Model. The
annotations are instances of annotation classes (i.e. subclasses of Protégé :ANNOTATION
class). A Python script generates the schema from the GuidelineModel project. Another script
generates the XML export from a particular Protégé guideline knowledge base.

4.10.1.2.1 Annotations on Guideline Model Classes

The annotation classes have the following structures:

KBXMLDescription (top-level class)

 XSDStructure (subclass of KBXMLDescription)

 XSDSpecification (subclass of XSDStructure)

 slots:

 root_name: root token of the XML document (e.g. “guideline”)

 sections: specifies the “toplevel” classes whose instances are underneath the root of
the XML document (this is where we specify that Guideline, Recommendation_Set, Variable,
and CEMMetaclass are the classes whose instances we are going to expand

 ClassXMLAnnotation (subclass of XSDStructure) Each instance of this class contains
annotations on a class.

 slots:

SAGE Guideline Model Specification 10/10/06

 Page 62 of 72

 class: reference to the class being annotated

 class_type_name: the name to use when declaring the XML schema complex type
name for the class. Used to hide Protege-specific classes

 parent_for_schema: parent of the complex type being declared (When there are
multiple parents for a class, need to select one for the purpose of creating an XML schema)

 selected_local_template_slots: local slots of the annotated class that should be used
as subelements (Slots that are not inherited from parent_for_schema, but include slots from non-
parent superclasses)

 add_template_slot_constraints: if true, then generate directly overridden template
slot facets

An example of ClassXMLAnnotation is shown in Figure 37.

Figure 37. ClassXMLAnnotation for the class "Action."

 SlotXMLAnnotation (subclass of XSDStructure): a class that allows annotations
on a slot

 slots:

 slot_reference: reference to the slot being annotated

 referencep: if true then values of the slot are referenced instead of expanded

 SlotConstraintSpecification (subclass of KBXMLDescription): a class that specifies the
structure of constraints added by a CEM (i.e. facet overrides)

 slots:

 slot_name: name of slot where a constraint is being placed.

SAGE Guideline Model Specification 10/10/06

 Page 63 of 72

 slot_constraint_name: the name of constraint (In Protege term, the name of a facet of a
slot)

 slot_constraint_values: values of the constraint (i.e. facet values)

4.10.1.2.2 Algorithm for generating XML Schema and XML export

To generate the XML schema, the Python script takes the root_name and sections in an instance
of XSDSpecification to generate the element hierarchy of the schema. Slots of the top-level
classes are subelements of the element hierarchy.

After declaring the element hierarchy structure, the Python script goes through all instances of
ClassXMLAnnotation to generate a complex type for each instance.

The XML-export script uses the root_name and sections in the XSDSpecification instance to
generate the element hierarchy, expanding all instances of the classes specified in the “sections”
slot of XSDSpecification instance.

SAGE Guideline Model Specification 10/10/06

 Page 64 of 72

Figure 38. An XMLSpy view of a simplified view of XML Schema for the SAGE Guideline
Model.

4.10.2 XML instance

In generating the XML instance from the Protégé knowledge base, I arbitrarily changed all
occurrences of “<” in the knowledge base to “LessThan”. Ditto with “>.”

Instances of non-terminological classes that are not part of Guideline Model are represented as
instances of the most specific class in the Guideline Model. These non-Guideline Model classes

SAGE Guideline Model Specification 10/10/06

 Page 65 of 72

are classes that represent constraints on slots in the Guideline Model. All CEMs fall into this
category, so are instances of specialized data type classes (e.g. BloodPressure subclass of
PhysicalQuantity data type).

5 Information Models

The healthcare entities that comprise the environment in which a clinical guideline operates are
formalized in the SAGE guideline model. We categorize them as Health Organization Model or
Patient Data Model.

5.1 Healthcare Organization Model

The SAGE project models the healthcare organization in which a guideline is implemented only
to the extent that’s necessary for the specification of an executable guideline. Thus, the settings
where care takes place and the roles of patients and care providers have been relegated to
terminology set. The current model contains an enumeration of clinical and information
technology resources and an event model that defines the structure of the events that may trigger
the SAGE execution engine.

5.1.1 Resources

See http://smi-web.stanford.edu/projects/sage/modelclasseshtml/index.html for a listing of the
resources.

5.1.2 Event Model

The SAGE Guideline Model represents an executable encoding of a guideline. The execution of
the guideline is triggered by events in the CIS or by events generated by SAGE itself. We model
two types of events: Clinical/administrative events and TimeDrive events

5.1.2.1 Clinical/administrative event

A SAGE clinical or administrative event has the form "an agent in some role (e.g., Family
Medicine Physician) performs an act on an object (e.g., accessing a resource such as patient
medical record) in a setting (e.g., Outpatient clinical setting)"

To maintain backward compatibility, we define Clinical_Event and Administrative Event as
separate classes that have identical structure and that have a SAGE_event_type slot that points to
the hierarchy of event classes. So the instance of Clinical_Event (where Outpatient family
medicine physician accesses patient record) still points to the class representing the same event.

Nevertheless, the definition of triggering events in Recommendation_Set_Entities had to
change from class type to instance type. That’s one incompatibility between the current version
of the Guideline Model and execution engine.

Because we keep the reference to event classes, the execution engine can easily adapt to the new
model by accessing the SAGE_event_type slot of the new event instances to get the old event
class.

SAGE Guideline Model Specification 10/10/06

 Page 66 of 72

5.1.2.2 TimeDrive event

A TimeDrive_Event is an event that is generated purely on the basis of passage of time. There
are different TimeDrive events.

A Periodic_Time_Event has a periodic interval specification using the HL7 data type Period
Interval of Time.

The HL7 Period Interval of Time is defined by three attributes:

- period: a quantity of time (e.g., 2 weeks) that specifies the distance between any two time
intervals.

- phase: an interval of time (i.e., an interval defined by low and high time-point limits) that
specifies the duration and anchor of the interval in a calendar. The way HL7 specifies a time
interval is to find an example of the interval to be specified. Thus, encoding a zero-length
periodic interval of time “Sunday midnight every 2 weeks” would involve (1) specifying “every
2 weeks” using the period attribute , and then specifying zero-length interval “Sunday midnight”
by finding an example of such time interval (e.g., 200601010000;200601010000).

-alignment: is a calendar code (CY, MY, WY, DM etc.) to which periodic intervals are aligned.
For example, [20060102; 20060102] aligned to CY means January 02 every year.

See {HL7 V3 standard}/infrastructure/datatypes/datatypes.htm#domain-CalendarCycle for a
complete list of calendar codes.

A Relative_Periodic_Time_Event is a Periodic_Time_Event that occurs periodically after an
anchor event.

The event_times slot of the Fixed_Time_Event class specifies a set of PointInTime instances
when the events should be generated.

An instance of Relative_Time_Event class is an event that occurs at a point in time relative to
another event. The anchor slot defines the point of reference. The duration slot defines the
duration of time that should pass before this event is generated.

5.2 Patient Data Models

The SAGE Guideline Model is designed to deliver patient-specific decision support for
guideline-based care. For that purpose, it must use patient information and deliver its
recommendations in structured format. In SAGE, the format of patient information is defined
through a Virtual Medical Record and Clinical Expression Models. The format of patient-
specific recommendation output, as defined by subclasses of Action_Specification varies. The
format include string messages (Notify), operations on VMR classes (Conclude, Retract,
Recommend_VMROrder, and Inquire), and operations on order sets
(Recommend_OrderSet). The Display action outputs the result of evaluating an expression,
instances of VMR classes or Supplemental_Materials, and what we call Clinical Data Set. In
this section, we briefly describe the VMR and Clinical Data Set as examples of patient data
models.

SAGE Guideline Model Specification 10/10/06

 Page 67 of 72

5.2.1 Virtual Medical Record (VMR)

The Virtual Medical Record is described in a separate document (****Ref****). In this
document we just give an UML diagram for illustrative purpose.

5.2.2 Clinical Expression Models

Given a Virtual Medical Record such as the one shown in Section 5.2.1, there are still many
possible variations in represent a particular clinical statement. For example, “Presence of
diabetes” can be represented as an Observation whose code is “Diabetes,” or an Observation
whose code is “Diabetes” and value is “present.” A clinical expression model in SAGE is
designed to remove the ambiguity by stating explicitly how patient data should be represented. It
does so by adding constraints to a VMR class. For example, a clinical expression model for
“Anaphylactic reaction to hepatitis B vaccine” would say that such data will be modeled as
instances of AdverseReaction class where the reaction slot is constrained to be a concept
subsumed by “anaphylactic reaction” and the substance slot is constrained to be a kind of
hepatitis B vaccine.

SAGE Guideline Model Specification 10/10/06

 Page 68 of 72

5.2.3 Clinical DataSet

SAGE project investigated the use of flowsheet in presenting guideline-based recommendations.
Several types of clinical data can be displayed in time-trended fashion, e.g. vital signs,
assessment, lab tests and medication. For each data item, flowsheet application requires
information to be able to initiate lab or medication order, set user input priority and display
SAGE concluded recommendations on each item. Creating a central structure for such
information would facilitate integration of SAGE DSS with CIS that has flowsheet applications. .

We experimented with a new information model called Clinical DataSet in order to define
flowsheet-oriented data items. An instance of Clinical DataSet holds a collection of
Clinical_DataElement instances as shown in Figure 39

Figure 39 UML diagram showing Clinical DataElement

SAGE Guideline Model Specification 10/10/06

 Page 69 of 72

Figure 40 shows an example of Clinical DataElement for systolic blood pressure.

Figure 40 An example Clinical DataElement

Figure 41 shows the use of clinical data elements in Flowsheet.

SAGE Guideline Model Specification 10/10/06

 Page 70 of 72

ClassName Normal_Range Inferred_Status

 Or Goal

Figure 41 Example of the use of flowsheet to display guideline recommendations

Appendix: Class Hierarchy for SAGE Guideline Model (with links to detailed
specification of each class)

An HTML representation of the SAGE Guideline Model class hierarchy (with links to detailed
specification of each class in javadoc-like format) can be found at
(****Ref****)guidelinemodelhtml\index.html.

Acknowledgement

The SAGE project was supported in part by grant 70NANB1H3049 of the NIST Advanced
Technology Program.

6 References

American Diabetes Association (2002). Standards of Medical Care for Patients With Diabetes
Mellitus. Diabetes Care 25(Supplement 1): S33-S49.

Boxwala, A., Tu, S. W., et al. (2001). Towards a Representation Format for Sharable Clinical
Guidelines. J Biomed Inform 34(3): 157-169.

SAGE Guideline Model Specification 10/10/06

 Page 71 of 72

Boxwala, A. A., Peleg, M., et al. (2004). GLIF3: A Representation Format for Sharable
Computer-Interpretable Clinical Practice Guidelines. J Biomed Inform 37(3): 147-161.

Carter, J., Brown, S., et al. (2002). Initializing the VA medication reference terminology using
UMLS metathesaurus co-occurrences. Proc AMIA Symp, 116-120.

Field, M. J. and Lohr, K. N., Eds. (1990). Clinical Practice Guidelines: Directions for a New
Program. Washington, DC, National Academy Press.

Fieschi, M., Dufour, J., et al. (2003). Medical decision support systems: old dilemmas and new
paradigms? Methods Inf Med 42(3): 190-198.

Fox, J. and Das, S. K. (2000). Safe and Sound. Cambridge, MIT Press.

Grieve, G. and Schadow, G. (2003). UML Implementation Technology Specification - Data
Types. www.hl7.org/v3ballot/html/foundationdocuments/itsum/datatypes-its-uml.htm, accessed 2004.

Health Level 7 (2003). HL 7 Reference Information Model. http://www.hl7.org/library/data-
model/RIM/modelpage_non.htm, accessed 2003.

Hripcsak, G., Ludemann, P., et al. (1994). Rationale for the Arden Syntax. Comput Biomed Res
27(4): 291-324.

Institute for Clinical Systems Improvement (2002). Health Care Guideline: Immunization.
http://www.icsi.org/knowledge/detail.asp?catID=29&itemID=174, accessed 2002.

Johnson, P. D., Tu, S. W., et al. (2000). Using Scenarios in Chronic Disease Management
Guidelines for Primary Care. Proc AMIA Symp, Los Angeles, USA, 389-393.

Johnson, P. D., Tu, S. W., et al. (2001a). Achieving Reuse of Computable Guideline Systems.
Medinfo, London, UK, 99-1003.

Johnson, P. D., Tu, S. W., et al. (2001b). A Virtual Medical Record for Guideline-Based
Decision Support. Proc AMIA Symp, Washington, DC, 294-298.

Kiepuszewski, B., ter Hofstede, A. H. M., et al. (2003). Fundamentals of Control Flow in
Workflows. Acta Informatica 39(3): 143-209.

Krall, M. A. and Sittig, D. (2002). Clinician's assessments of outpatient electronic medical record
alert and reminder usability and usefulness requirements. Proc AMIA Symp, 400-404.

Object Management Group (2003). UML 2.0 OCL Specification. http://www.omg.org/cgi-
bin/doc?ptc/03-10-14.pdf, accessed 2004.

Peleg, M., Boxwala, A., et al. (2000). GLIF3: The Evolution of a Guideline Representation
Format. Proc AMIA Symp, Los Angeles, 645-649.

Peleg, M., Tu, S. W., et al. (2003). Comparing Computer-Interpretable Guideline Models: A
Case-Study Approach. J Am Med Inform Assoc 10(1): 52-68.

Peleg, M., Boxwala, A. A., et al. (2004). The InterMed Approach to Sharable Computer-
Interpretable Guidelines: A Review. J Am Med Inform Assoc 11(1): 1-10.

Pryor, T. and Hripcsak, G. (1993). Sharing MLM's: An Experiment between Columbia-
Presbyterian and LDS Hospital. Proc Annu Symp Comput Appl Med Care, 399-403.

SAGE Guideline Model Specification 10/10/06

 Page 72 of 72

Quaglini, S., Stefanelli, M., et al. (2000). Guideline-Based Careflow Systems. Artif Intell Med
5(22): 5-22.

Shahar, Y., Young, O., et al. (2003). DEGEL: A hybrid, multiple-ontology framework for
specification and retrieval of clinical guidelines. AIME, Protaras, Cyprus.

Shankar, R., Tu, S. W., et al. (2002). Use of Protégé-2000 to Encode Clinical Guidelines.
Stanford University. SMI-2002-0944.

Shankar, R. D., Tu, S. W., et al. (2003). A Knowledge-Acquisition Wizard to Encode
Guidelines. Proc AMIA Symp, Washington DC, 1007.

Shiffman, R. (1994). Toward effective implementation of a pediatric asthma guideline:
integration of decision support and clinical workflow. Proc Annu Symp Comput Appl
Med Care, Washington, DC, 797-801.

Shiffman, R., Shekelle, P., et al. (2003). Standardized reporting of clinical practice guidelines: A
proposal from the Conference on Guideline Standardization. Ann Intern Med 139: 493-
498.

Shiffman, R. N., Karras, B. T., et al. (2000). GEM: A Proposal for a More Comprehensive
Guideline Document Model Using XML. J Am Med Inform Assoc 7: 488-498.

Tu, S. W. and Musen, M. A. (1999). A Flexible Approach to Guideline Modeling. Proc AMIA
Symp, Washington DC, Hanley & Belfus, Inc., 420-424.

Tu, S. W., Musen, M. A., et al. (2004). Modeling Guidelines for Integration into Clinical
Workflow. Medinfo, San Francisco, CA, USA, 174-178.

W3C (2002). Web Services Activity. http://www.w3.org/2002/ws, accessed 2003.

Wang, A. Y., Sable, J. H., et al. (2002a). The SNOMED clinical terms development process:
refinement and analysis of content. Proc AMIA Symp. 2002, 845-849.

Wang, D., Tu, S. W., et al. (2002b). Representation Primitives, Process Models and Patient Data
in Computer-Interpretable Clinical Practice Guidelines: A Literature Review of Guideline
Representation Models. Int J Med Inf 68(1-3): 59-70.

Workflow Management Coalition (1999). Interface 1: Process Definition Interchange, Process
Model. Workflow Management Coalition. WfMC TC-1010-P.

